OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 25 — Dec. 11, 2006
  • pp: 12419–12431

Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study

Kyujung Kim, Soon Joon Yoon, and Donghyun Kim  »View Author Affiliations


Optics Express, Vol. 14, Issue 25, pp. 12419-12431 (2006)
http://dx.doi.org/10.1364/OE.14.012419


View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A nanowire-based localized surface plasmon resonance (LSPR) biosensor has been investigated to evaluate the impact of design parameters of nanowires on the excitation of localized surface plasmons (LSPs) and the sensitivity enhancement of a LSPR biosensor. The results based on rigorous coupled wave analysis and finite difference time domain method indicate that significant sensitivity increase is associated with LSP excitation mediated by nanowires and that resonant coupling of LSPs through a nanogroove achieves larger field enhancement and sensitivity improvement than LSP excitation in a single nanowire. A specific optimization provided a nanowire-based structure with sensitivity increase by more than 23 times as well as good linear detection properties.

© 2006 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.6010) Integrated optics : Sensors
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 14, 2006
Revised Manuscript: October 30, 2006
Manuscript Accepted: November 28, 2006
Published: December 11, 2006

Virtual Issues
Vol. 2, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Kyujung Kim, Soon J. Yoon, and Donghyun Kim, "Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study," Opt. Express 14, 12419-12431 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12419


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Kubitschko, J. Spinke, T. Brückner, S. Pohl, and N. Oranth, "Sensitivity enhancement of optical immunosensors with nanoparticles," Anal. Biochem. 253, 112-122 (1997). [CrossRef] [PubMed]
  2. L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: Particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999). [CrossRef]
  3. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000). [CrossRef]
  4. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001). [CrossRef]
  5. A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003). [CrossRef]
  6. Y. Sun and Y. Xia, "Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes," Anal. Chem. 74, 5297-5305 (2002). [CrossRef] [PubMed]
  7. E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16, 1685-1706 (2004). [CrossRef]
  8. K. Aslan, J. R. Lakowicz, and G. D. Geddes, "Plasmon light scattering in biology and medicine: new sensing approaches, vision and perspectives," Curr. Opin. Chem. Biol. 9, 538-544 (2005). [CrossRef] [PubMed]
  9. B. Sepúlveda, A. Calle, L. Lechuga, and G. Armelles, "Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor," Opt. Lett. 31, 1085-1087 (2006). [CrossRef] [PubMed]
  10. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, "Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration," Opt. Lett. 29, 2378-2380 (2004). [CrossRef] [PubMed]
  11. H. M. Cho, W. Chegal, Y. J. Cho, Y. Kim, and H. Kim, "Enhancement of biomolecular detection sensitivity by surface plasmon resonance ellipsometry," Proc. SPIE 6008, 293-298 (2005).
  12. K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005). [CrossRef] [PubMed]
  13. W-C. Liu, "High sensitivity of surface plasmon of weakly-distorted metallic surfaces," Opt. Express 13, 9766-9773 (2005). [CrossRef] [PubMed]
  14. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  15. D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express 13, 7760-7771 (2005). [CrossRef] [PubMed]
  16. K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006). [CrossRef]
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, Weinheim, Germany, 1983) Chap. 12.
  18. L. Genzel, T. P. Martin, and U. Kreibig, "Dielectric function and plasma resonances of small metal particles," Z. Physik B21, 339-346 (1975).
  19. L. A. Lyon, M. D. Musick, and M. J. Natan, "Colloidal Au-enhanced surface plasmon resonance immunosensing," Anal. Chem. 70, 5177-5183 (1998). [CrossRef] [PubMed]
  20. S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, "Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles," Opt. Lett. 29, 1390-1392 (2004). [CrossRef] [PubMed]
  21. Z. Salamon, G. Lindblom, L. Rilfors, K. Linde, and G. Tollin, "Interaction of phosphatidylserine synthase from E. coli with lipid bilayers: coupled plasmon-waveguide resonance spectroscopy studies," Biophys. J. 78, 1400-1412 (2000). [CrossRef] [PubMed]
  22. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986). [CrossRef]
  23. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, "100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask," Appl. Phys. 78, 142-143 (2001).
  24. T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, "Electrodynamics of noble metal nanoparticles and nanoparticle clusters," J. Cluster Sci. 10, 295-317 (1999). [CrossRef]
  25. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, "Electromagnetic coupling between a metal nanoparticles grating and a metallic surface," Opt. Lett. 30, 3404-3406 (2005). [CrossRef]
  26. J. Lermé, "Introduction of quantum finite-size effects in the Mie’s theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000). [CrossRef]
  27. E. Moreno, D. Erni, C. Hafner, and R. Vahldieck, "Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures" J. Opt. Soc. Am. A 19, 101-111 (2002). [CrossRef]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, FL, U. S. A., 1985).
  29. P. Liu, EM Explorer, http://www.emexplorer.net.
  30. E. Hutter, S. Cha, J-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001). [CrossRef]
  31. I. Pockrand and H. Raether, "Surface plasma oscillations in silver films with wavy surface profiles: a quantitative experimental study," Opt. Commun. 18, 395-399 (1976). [CrossRef]
  32. H. Raether, "Dispersion relation of surface plasmons on gold- and silver gratings," Opt. Commun. 42, 217-222 (1982). [CrossRef]
  33. K. M. Byun, S. J. Kim, and D. Kim, "Profile effect on the feasibility of extinction-based localized surface plasmon resonance biosensors with metallic nanowires," Appl. Opt. 45, 3382-3389 (2006). [CrossRef] [PubMed]
  34. D. Kim, "Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors," J. Opt. Soc. Am. A 23, 2307-2314 (2006). [CrossRef]
  35. R. Bruns and H. Raether, "Plasma resonance radiation from non-radiative plasmons," Z. Physik 237, 98-106 (1970). [CrossRef]
  36. S. Moon and D. Kim, "Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals," J. Opt. Soc. Am. A 23, 199-207 (2006). [CrossRef]
  37. U. Kreibig, "Electronic properties of small silver particles: the optical constants and their temperature dependence," J. Phys. F Met. Phys.  4, 999-1014 (1974). [CrossRef]
  38. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, Germany, 1988) Chap. 2.
  39. A. A. Maradudin, A. R. McGurn, and E. R. Mendez, "Surface plasmon polariton mechanism for enhanced backscattering of light from one-dimensional randomly rough metal surfaces," J. Opt. Soc. Am. A 12, 2500-2506 (1995). [CrossRef]
  40. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited