OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 25 — Dec. 11, 2006
  • pp: 12451–12456

Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration

Snjezana Tomljenovic-Hanic, C. Martijn de Sterke, and M. J. Steel  »View Author Affiliations

Optics Express, Vol. 14, Issue 25, pp. 12451-12456 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (185 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design novel photonic crystal slab heterostructures, substituting the air in the holes with materials of refractive index higher than n=1. This can be achieved by infiltrating the photonic crystal slab (PCS) with liquid crystal, polymer or nano-porous silica. We find that the heterostructures designed in this way can have quality factors up to Q=10 6. This high-Q result is comparable with the result of previously reported designs in which the lattice is elongated in one direction. Unlike conventional heterostructures, our design does not require nanometre-scale changes in the geometry. Additionally, infiltrated PCS can be constructed at any time after PCS fabrication.

© 2006 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Photonic Crystals

Original Manuscript: October 25, 2006
Revised Manuscript: November 24, 2006
Manuscript Accepted: November 24, 2006
Published: December 11, 2006

Snjezana Tomljenovic-Hanic, C. Martijn de Sterke, and M. J. Steel, "Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration," Opt. Express 14, 12451-12456 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. S. Song, and S. Noda, T. Asano, "Photonic devices based on in-plane hetero photonic crystals," Science 300,1537 (2003). [CrossRef] [PubMed]
  2. A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, "Ultrasmall multi-channel resonant-tunneling filter using mode-gap of width-tuned photonic-crystal waveguide," Opt. Express 13, 4202-4209 (2005). [CrossRef] [PubMed]
  3. H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, J-S. Kim, "Nondegenerate monopole-mode two-dimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001). [CrossRef]
  4. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  5. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke and J. Salzman, "Diamond based photonic crystal microcavities, " Opt. Express 14, 3556-3562 (2006). [CrossRef] [PubMed]
  6. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005). [CrossRef] [PubMed]
  7. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. C. Mägi, D. J. Moss, and B. J. Eggleton, "Efficient coupling o chalcogenide glass photonic crystal waveguide via silica optical fiber nanowires," Opt. Express 14, 1070-1078 (2006). [CrossRef] [PubMed]
  8. M. Loncar, and A. Scherer, "Microfabricated optical cavities and photonic crystals" in Optical microcavities, K. Vahala, ed. (World Scientific Publishing, 2004).
  9. M. Loncar and A. Scherer, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003). [CrossRef]
  10. B. Maune, M. Loncar, J. Wtzens, M. Hochberg, T. Baehr-Jones, and Y. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004). [CrossRef]
  11. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  12. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005). [CrossRef] [PubMed]
  13. Z. Zhang, and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Express 12, 3988-3995 (2004). [CrossRef] [PubMed]
  14. B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005). [CrossRef]
  15. B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, "Transmission and reflection characteristics of in-plane hetero-photonic crystals," Appl. Phys. Lett. 85, 4591-4593 (2004). [CrossRef]
  16. E. Kuramochi, M. Natomi, S. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  17. T. Asano, B. S. Song, and S. Noda, "Analysis of the experimental Q factors (~1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006). [PubMed]
  18. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. (to be published). [PubMed]
  19. E. Istrate and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Modern Phys. 78, 455-481 (2006). [CrossRef]
  20. G. P. Harmon, "Polymers for optical fibers and waveguides: An Overview," in Optical polymers fibers and waveguides, J. P. Harmon, and G. K. Noren, eds. (American Chemical Society, 2001) pp. 1-23.
  21. G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, "Properties of sol-gel derived scratch-resistant nano-porous silica films by a mixed atmosphere treatment," J. Non-Cryst. Solids 275, 169-174 (2000). [CrossRef]
  22. V. A. Mandelshtam and H. S. Taylor, "Harmonic inversion of time signals," J. Chem. Phys. 107, 6756-6769 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited