OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 12623–12628

Resonance and extraordinary transmission in annular aperture arrays

S. M. Orbons and A. Roberts  »View Author Affiliations

Optics Express, Vol. 14, Issue 26, pp. 12623-12628 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (182 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here the behavior of periodic annular aperture arrays in a perfectly conducting film is considered as the geometry of the apertures is varied. Using a previously developed rigorous electromagnetic modal method it is shown that the far-field transmission spectrum approaches that for an array of circular apertures as the stop size approaches zero. In the case where the diameter of the apertures is significantly less than that of the period of the array, the behavior of the array changes gradually from one where the predominant features in the spectra are due to the excitation of a waveguide resonance to one exhibiting ‘extraordinary transmission’.

© 2006 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(230.7370) Optical devices : Waveguides

ToC Category:
Diffraction and Gratings

Original Manuscript: November 28, 2006
Manuscript Accepted: December 4, 2006
Published: December 22, 2006

S. M. Orbons and A. Roberts, "Resonance and extraordinary transmission in annular aperture arrays," Opt. Express 14, 12623-12628 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  2. M. Beruete, M. Sorolla, I. Campillo, J. S. Dolado, L. Martín-Moreno, J. Bravo-Abad and F. J. García-Vidal, "Enhanced millimeter wave transmission through quasi-optical subwavelength perforated plates," IEEE Trans. Antennas Propag. 53, 1897-1903 (2005). [CrossRef]
  3. A. Roberts and R. C. McPhedran, "Bandpass grids with annular apertures," IEEE Trans Antennas Propag. 36, 607-611 (1988). [CrossRef]
  4. A. Roberts and R. C. Compton, "A vector measurement scheme for testing quasi-optical components," Int. J. Infrared Millimeter Waves 11, 165-174 (1990). [CrossRef]
  5. P. A. Krug, D. H. Dawes, R. C. McPhedran, W. Wright, J. C. Macfarlane and L. B. Whitbourn, "Annular-slot arrays as far-infrared bandpass-filters," Opt. Lett. 14, 931-933 (1989). [CrossRef] [PubMed]
  6. R. T. Kristensen, J. F. Beausang, and D. M. DePoy, "Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control," J. Appl. Phys. 95, 4845-4851 (2004). [CrossRef]
  7. W. Fan, S. Zhang, B. Minhas, K. J. Malloy and S. R. J. Brueck, "Enhanced infrared transmission through subwavelength coaxial metallic arrays," Phys. Rev. Lett. 94, 033902-1-4 (2005). [CrossRef] [PubMed]
  8. J. Salvi, M. Roussey, F. I. Baida, M.-P. Bernal, A. Mussot, T. Sylvestre, H. Maillotte, D. van Labeke, A. Perentes, I. Utke, C. Sandu, P. Hoffman and B. Dwir, "Annular aperture arrays: study in the visible region of the electromagnetic spectrum," Opt. Lett. 30, 1611-1613 (2005). [CrossRef] [PubMed]
  9. F. I. Baida, D. van Labeke, G. Granet, A. Moreau and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-D metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79, 1-8 (2004). [CrossRef]
  10. M. J. Lockyear, A. P. Hibbins and J. R. Sambles, "Microwave transmission through a single subwavelength annular aperture in a metal plate," Phys. Rev. Lett. 94, 193902-1-4 (2005). [CrossRef] [PubMed]
  11. C.-C. Chen, "Transmission of microwave through perforated flat plates of finite thickness," IEEE Trans. Microwave. Theory Tech. 21, 1-6 (1973). [CrossRef]
  12. P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran and D. Maystre, "Inductive grids in the region of diffraction anomalies: Theory, experiment and applications," IEEE Trans. Microwave. Theory Tech. 28, 1119-1125 (1980). [CrossRef]
  13. L. Martín-Moreno and F. J. García-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619-3628 (2004). [CrossRef]
  14. F. J. García de Abajo, R. Gómez-Medina and J. J. Sáenz, "Full transmission through perfect-conductor subwavelength hole arrays," Phys. Rev. E. 72, 016608-1-4 (2005). [CrossRef]
  15. A. Roberts, M. L. von Bibra, H.-P. Gemünd and E. Kreysa, "Thick grids with circular apertures: A comparison of theoretical and experimental performance," Int. J. Inf. Millimeter Waves 15, 505-517 (1994). [CrossRef]
  16. N. Marcuvitz, "Waveguide Handbook," Peter Peregrinus Ltd., London, 1986.
  17. F. I. Baida and D. van Labeke, "Light transmission by subwavelength annular aperture arrays in metallic films," Opt. Commun. 209, 17-22 (2002) [CrossRef]
  18. A. Roberts, "Modal methods for gratings, grids and apertures," PhD thesis, University of Sydney (1988).
  19. J. R. Andrewartha, J. R. Fox and I. J. Wilson, "Resonance anomalies in the lamellar grating," Opt. Acta 26, 69-89 (1979). [CrossRef]
  20. Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett.,  96, 233901 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited