OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 12629–12636

Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface

Long Chen, Jacob T. Robinson , and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 14, Issue 26, pp. 12629-12636 (2006)
http://dx.doi.org/10.1364/OE.14.012629


View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Through full-vectorial simulations and analytical models, we investigate the role of radiation and surface plasmon polaritons (SPP) in the optical interaction between a nano-slit and a parallel nano-groove on a metal surface. We quantitatively confirm the radiaton as the interaction mechanism in perfect electrical conductors (PEC), and verify the role of radiation and SPP in the slit-groove interaction in silver. While the contribution of SPP dominates for the nano-slit and nano-groove placed far apart, the radiation plays a significant role for the nano-slit and nano-groove with smaller separations comparable to one wavelength. We present the first quantitative of the individual contributions of the radiation and SPP on the transmission through the nano-slit.

© 2006 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 20, 2006
Revised Manuscript: December 8, 2006
Manuscript Accepted: December 8, 2006
Published: December 22, 2006

Citation
Long Chen, Jacob T. Robinson, and Michal Lipson, "Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface," Opt. Express 14, 12629-12636 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-12629


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002). [CrossRef] [PubMed]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  4. H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, and H.J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  5. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  6. W.L. Barnes, W.A. Murray, J. Dintlinger, E. Devaux and T.W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film", Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  7. D.E. Grupp, H.J. Lezec, K.M. Pellerin, T.W. Ebbesen, and T. Thio, "Fundamental role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000). [CrossRef]
  8. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. 't Hooft, D. Lenstra, and E. R. Eliel, "Plasmon-Assisted Two-Slit Transmission: Young's Experiment Revisited," Phys. Rev. Lett. 94, 053901 (2005). [CrossRef] [PubMed]
  9. F.  Przybilla, A.  Degiron, J.-Y.  Laluet, C.  Genêt and T. W.  Ebbesen, "Optical transmission in perforated noble and transition metal films," J. Opt. A: Pure Appl. Opt. 8, 458-463 (2006). [CrossRef]
  10. H. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express 12, 3629-3651 (2004). [CrossRef] [PubMed]
  11. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nature Physics 2, 262 (2006). [CrossRef]
  12. P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nature Physics 2, 551 (2006) [CrossRef]
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985)
  14. Y. Takakura, "Optical Resonance in a Narrow Slit in a Thick Metallic Screen," Phys. Rev. Lett. 86, 5601 (2001) [CrossRef] [PubMed]
  15. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901 (2003). [CrossRef] [PubMed]
  16. P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Theory of Surface Plasmon Generation at Nanoslit Apertures," Phys. Rev. Lett. 95, 263902 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited