OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 12770–12781

Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching

Landobasa Y. Mario, S. Darmawan, and Mee K. Chin  »View Author Affiliations

Optics Express, Vol. 14, Issue 26, pp. 12770-12781 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a two-ring resonator configuration that can provide optical switching with high extinction ratio (ER), large modulation depth (MD) and low switching threshold, and compare it with two other conventional one-ring configurations. The achievable input threshold is n2IIN ~10-5, while maintaining a large ER (> 10dB) and MD (~ 1) over a 10-GHz (0.1 nm) optical bandwidth. This performance can also be achieved by the ring-enhanced Mach-Zehnder interferometer, and is one to two orders of magnitude better than the simple bus-coupled one-ring structures, because of the use of asymmetric Fano resonance as opposed to the usual symmetric resonance of a single ring. The sharpness and the asymmetricity of the Fano resonance are linked to the low switching threshold and the high extinction ratio, respectively, and also accounts for the different dependence on ring dimensions between the one- and two-ring structures.

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(190.1450) Nonlinear optics : Bistability
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: October 18, 2006
Revised Manuscript: December 1, 2006
Manuscript Accepted: December 6, 2006
Published: December 22, 2006

Landobasa Y. Mario, S. Darmawan, and Mee K. Chin, "Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching," Opt. Express 14, 12770-12781 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B.E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004). [CrossRef]
  2. T. A. Ibrahim, R. Grover, L. -C. Kuo, S. Kanakaraju, L. C. Calhoun, P. -T. Ho, "All-optical AND/NAND logic gates using semiconductor microresonators," IEEE Photon. Technol. Lett. 15, 1422-1424 (2003). [CrossRef]
  3. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator", Opt. Lett. 29, 2861-2863 (2004). [CrossRef]
  4. D. A. B. Miller, "Refractive Fabry-Perot Bistability with Linear Absorption: Theory of Operation and Cavity optimization," IEEE J. Quantum Electron,  17, 306-311 (1981). [CrossRef]
  5. F. Sanchez, "Optical bistability in a 2x2 coupler fiber ring resonator: parametric formulation," Opt. Commun. 142, 211 (1997). [CrossRef]
  6. Y. Dumeige, D. Arnaud, P. Feron, "Combining FDTD with coupled mode theories for bistability in micro-ring resonators," Opt. Commun. 250 (2005) 376-383. [CrossRef]
  7. Y. Dumeige, P. Feron, "Dispersive tristability in microring resonator," Phys. Rev. E,  72066609 (2005). [CrossRef]
  8. J. Danckaert, K. Fobelets, I. Veretennicoff, "Dispersive optical bistability in stratified structures," Phys. Rev. B,  44, 15, 8214 (1991). [CrossRef]
  9. B. Maes, P. Bienstman, R. Baets, "Switching in coupled nonlinear photonic crystal resonators," J. Opt. Soc. Am. B  22(8), 1778-1784 (2005). [CrossRef]
  10. V. R. Almeida and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389 (2004). [CrossRef] [PubMed]
  11. S. Fan, W. Suh, and J. D. Joannopoulos, "Temporal coupled-mode theory for the Fano resonance in optical resonators, "J. Opt. Soc. Am. A,  20(3), 569-572 (2003). [CrossRef]
  12. Y. Lu, J. Yao, X. Li, and P. Wang, "Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach Zehnder Interferometer," Opt. Lett. 30, 3069-3071 (2005). [CrossRef] [PubMed]
  13. L. B. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, "Tunable delay line with interacting whispering-gallery-mode resonator," Opt. Lett. 29, 626 (2004). [CrossRef] [PubMed]
  14. I. Chremmos, and N. Uzunoglu, "Reflective properties of double-ring resonator system coupled to a waveguide," IEEE Photon. Technol. Lett,  17, 2110-2112, 2005 [CrossRef]
  15. Y. M. Landobasa, S. Darmawan, and M. K. Chin, "Matrix Analysis of 2-D Micro-resonator Lattice Optical Filters," IEEE J. Quantum Electronics 41, 1410-1418 (2005). [CrossRef]
  16. A. Yariv, "Critical coupling and its control in optical waveguide-resonator systems," IEEE Photon. Technol. Lett. 14, 483-485, 2002. [CrossRef]
  17. A.R. Cowan and J.F. Young, "Optical bistability involving photonic crystal microcavities and Fano line shapes," Phys. Rev. E 68046606 (2003) [CrossRef]
  18. V. Van, T. A. Ibrahim, P.P. Absil, F. G. Johnson, R. Grover, and P-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Quantum Electron. 8, 705-713 (2002). [CrossRef]
  19. B. L. Lawrence, M. Cha, W. E. Torruellas, G. I. Stegeman, S. Etemad, G. Baker, F. Kajzar, "Measurement of the complex nonlinear refractive index of single crystal p-toluene sulfonate at 1064 nm," Appl. Phys. Lett. 64 (1994), 2773. [CrossRef]
  20. C. Y. Chao and L. J. Guo," Reduction of surface scattering loss in polymer mirorings using thermal-reflow technique," IEEE Photon. Technol. Lett. 16, 1498-1500 (2004). [CrossRef]
  21. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited