OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 12782–12793

Non-reciprocal transmission and Schmitt trigger operation in strongly modulated asymmetric WBGs

Masafumi Fujii, Ayan Maitra, Christopher Poulton, Juerg Leuthold, and Wolfgang Freude  »View Author Affiliations

Optics Express, Vol. 14, Issue 26, pp. 12782-12793 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (463 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate numerically a non-reciprocal switching behavior in strongly modulated waveguide Bragg gratings (WBGs) having a longitudinally asymmetric stopband configuration. The minimum power predicted for a stable switching operation is found to be approximately 77 mW for a realistic waveguide structure made of prospective materials; we assume in this paper a nano-strip InGaAsP/InP waveguide having longitudinally asymmetric modulation of the waveguide width. The analysis has been performed with our in-house nonlinear finite-difference time-domain (FDTD) code adapted to parallel computing. The numerical results clearly show low-threshold Schmitt trigger operation, as well as non-reciprocal transmission property where the switching threshold for one propagation direction is lower than that for the other direction. In addition, we discuss the modulation-like instability phenomena in such nonlinear periodic devices by employing both an instantaneous Kerr nonlinearity and a more involved saturable nonlinearity model.

© 2006 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.1450) Nonlinear optics : Bistability

ToC Category:
Integrated Optics

Original Manuscript: November 21, 2006
Revised Manuscript: December 12, 2006
Manuscript Accepted: December 13, 2006
Published: December 22, 2006

Masafumi Fujii, Ayan Maitra, Christopher Poulton, Juerg Leuthold, and Wolfgang Freude, "Non-reciprocal transmission and Schmitt trigger operation in strongly modulated asymmetric WBGs," Opt. Express 14, 12782-12793 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M.D. Tocci, M.J. Bloemer, M. Scalora, J.P. Dowling, and C.M. Bowden, "Thin-film nonlinear optical diode," Appl. Phys. Lett. 66, 2324-2326 (1995). [CrossRef]
  2. A. Maitra, C.G. Poulton, J. Wang, J. Leuthold, and W. Freude, "Low switching threshold using nonlinearities in stopband-tapered waveguide Bragg gratings," IEEE J. Quantum Electron. 41, 1303-1308 (2005). [CrossRef]
  3. W. Freude, A. Maitra, J. Wang, C. Koos, C. Poulton, M. Fujii, and J. Leuthold, "All-optical signal processing with nonlinear resonant devices," in Proc. 8th Intern. Conf. on Transparent Optical Networks (ICTON’06), Vol. , (Nottingham, UK, 2006), paper We.D2.1, pp. 215-219.
  4. W. Chen and D.L. Mills, "Gap solitons and the nonlinear optical response of superlattices," Phys. Rev. Lett. 58, 160-163 (1987). [CrossRef] [PubMed]
  5. C. de Sterke and J.E. Sipe, "Switching dynamics of finite periodic nonlinear media: A numerical study," Phys. Rev. A 42, 2858-2869 (1990). [CrossRef] [PubMed]
  6. C. de Sterke and J.E. Sipe, "Gap solitons," in Progress in Optics, vol.XXXIII, pp.203-260, North-Holland, Amsterdam (1994).
  7. M. Scalora, J.P. Dowling, C.M. Bowden, and M.J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Phys. Rev. Lett. 73, 1368-1371 (1994). [CrossRef] [PubMed]
  8. M.W. Feise, I.V. Shdrivov, and Y.S. Kivshar, "Bistable diode action in left-handed periodic structures," Phys. Rev. E 71, 037,602 (2005). [CrossRef]
  9. X-H. Jia, Z-M. Wu, and G-Q. Xia, "Analysis of bistable steady characteristics and dynamic stability of linearly tapered nonlinear Bragg gratings," Opt. Express 12, 2945-2953 (2004). [CrossRef] [PubMed]
  10. E. Lidorikis and C.M. Soukoulis, "Pulse-driven switching in one-dimensional nonlinear photonic band gap materials: a numerical study," Phys. Rev. E 61, 5825-5829 (2000). [CrossRef]
  11. X.-S. Lin and S. Lan, "Unidirectional transmission in asymmetrically confined photonic crystal defects with Kerr nonlinearity," Chin. Phys. Lett. 22, 2847-2850 (2005). [CrossRef]
  12. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005). [CrossRef] [PubMed]
  13. O.H. Schmitt, "A thermionic trigger," J. Scientific Instruments 15, 24 (1938). [CrossRef]
  14. M. Fujii, C. Koos, C. Poulton, J. Leuthold, and W. Freude, "Nonlinear FDTD analysis and experimental verification of four-wave mixing in InGaAsP/InP racetrack micro-resonators," IEEE Photon. Technol. Lett. 18, 361-363 (2006). [CrossRef]
  15. C. Koos, M. Fujii, C. Poulton, R. Steingrueber, J. Leuthold, andW.Freude, "FDTD-modeling of dispersive nonlinear ring resonators: Accuracy studies and experiments," IEEE J. Quantum Electron. In print.
  16. J. Koga, "Simulation model for the effects of nonlinear polarization on the propagation of intense pulse lasers," Optics Lett. 24, 408-410 (1999). [CrossRef]
  17. K.S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media," IEEE Trans. Antennas Prop. 14, 302-307 (1966). [CrossRef]
  18. M. Fujii, M. Tahara, I. Sakagami, W. Freude, and P. Russer, "High-order FDTD and auxiliary differential equation formulation of optical pulse propagation in 2D Kerr and Raman nonlinear dispersive media," IEEE J. Quantum Electron. 40(2), 175-182 (2004). [CrossRef]
  19. A. Taflove and S.C. Hagness, Computational electrodynamics: The finite-difference time-domain method, 3rd ed., chap. 9 (Artech House, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited