OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 12794–12802

Realistic photonic bandgap structures for TM-polarized light for all-optical switching

Ping Ma, Franck Robin, and Heinz Jäckel  »View Author Affiliations

Optics Express, Vol. 14, Issue 26, pp. 12794-12802 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (639 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate manufacturable photonic crystal (PhC) structures with a large photonic bandgap for TM-polarized light. Although such PhC structures have been the object of only a limited number of studies to date, they are of central importance for ultra fast all-optical switches relying on intersubband transitions in AlAsSb/InGaAs quantum wells, which support only TM polarization. In this paper, we numerically study substrate-type PhCs for which the two-dimensional approximation holds and three-dimensional photonic-crystal slabs, both with honeycomb lattice geometry. Large TM PBGs are obtained and optimized for both cases. Two types of PhC waveguides are proposed which are able to guide TM modes. Their unique properties show the potential to apply as waveguiding structures in all-optical switches.

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.1150) Optical devices : All-optical devices

ToC Category:
Integrated Optics

Original Manuscript: November 6, 2006
Revised Manuscript: December 13, 2006
Manuscript Accepted: December 13, 2006
Published: December 22, 2006

Ping Ma, Franck Robin, and Heinz Jäckel, "Realistic photonic bandgap structures for TM-polarized light for all-optical switching," Opt. Express 14, 12794-12802 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kawanishi, "Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing," IEEE J. Quantum Electron. 34, 2604 (1998). [CrossRef]
  2. M. Nakazawa, "Tb/s OTDM technology," Proc. 27 Eur. Conf. on Opt. Commun. 184 (2001).
  3. P. Cristea, Y. Fedoryshyn, and H. Jäckel, "Growth of AlAsSb/InGaAs MBE-layers for all optical switches," J. Crystal Growth. 278, 544-547 (2005). [CrossRef]
  4. H. Yoshida, T. Mozume, A. Neogi and O. Wada, "Ultrafast all-optical switching at 1.3μm/1.55μm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions," Electron. Lett. 35, 1103 (1999). [CrossRef]
  5. A V Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868 (2004). [CrossRef]
  6. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  7. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).
  8. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751 (1999). [CrossRef]
  9. W C L. Hopman, R M de Ridder, C. G. Bostan, S. Selvaraja, V. J. Gadgil, L. Kuipers and A. Driessen, "Design and Fabrication of 2-Dimensional Silicon Photonic Crystal Membranes by Focused Ion Beam Processing," presented at the ePiXnet winterschool on Optoelectronic Integration: Technology and Applications, ePiXnet Winter School, Pontresina, Switzerland, 13-17 Mar. 2006.
  10. G. Stark, R. Wüest, F. Robin, D. Erni, H. Jäckel, A. Christ, N. Kuster, "Extraction of the geometric parameters of photonics crystals using the effective-index method," submitted to Opt. Lett.
  11. P. R. Villeneuve and M. Piché, "Photonic band gaps in two-dimensional square and hexagonal lattices," Phys. Rev. B 46, 4969 (1992). [CrossRef]
  12. D. Cassagne, C. Jouanin and D. Bertho, "Hexagonal photonic-band-gap structures," Phys. Rev. B 53, 7134 (1996). [CrossRef]
  13. S. Rowson, A. Chelnokov, J. M. Lourtioz and F. Carcenac, "Reflection and transmission characterization of a hexagonal photonic crystal in the mid infrared," J. Appl. Phys. 83, 5061-5064 (1998). [CrossRef]
  14. J. Ye, V. Mizeikis, Y. Xu, S. Matsuo and H. Misawa, "Fabrication and optical characteristics of silicon-based two-dimensional photonic crystals with honeycomb lattice," Opt. Commun. 211, 205-213 (2002). [CrossRef]
  15. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8173-190 (2001). [CrossRef] [PubMed]
  16. M. Kafesaki, C. M. Soukoulis and M. Agio, "Losses and transmission in two-dimensional slab photonic crystals," Appl. Phys. 96, 4033-4038 (2004).
  17. C. G. Bostan and R. M. de Ridder, "Design of photonic crystal slab structures with absolute gaps in guided modes," J. Optoelectron.Adv Mater. 4,921-928 (2002).
  18. C. Y. Kao, S. Osher, and E. Yablonovitch, "Maximizing band gaps in two-dimensional photonic crystals by using level set methods," Appl. Phys. B 81, 235-244 (2005). [CrossRef]
  19. Y. Sugimoto, N, Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K. Inoue, "Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs," J. Appl. Phys. 91, 922-929 (2002). [CrossRef]
  20. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  21. M. Qiu, "Band gap effects in asymmetric photonic crystal slabs," Phys. Rev. B 66, 033103 (2002). [CrossRef]
  22. M. Qiu, "Effective index method for heterostructures-slab-waveguide-based two-dimensional photonic crystals" Appl. Phys. Lett. 81, 1163-1165 (2002). [CrossRef]
  23. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Linear waveguides in photonic-crystal slabs," Phys. Rev. B 62, 8212 (2000). [CrossRef]
  24. Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, Y. Watanabe, K. Asakawa and K. Inoue, "Guided modes of a width-reduced photonic-crystal slab line-defect waveguide with asymmetric cladding," J. Lightwave Technol. 23, 2749-2755 (2005). [CrossRef]
  25. A. V. Gopal, H. Yoshida, T. Simoyama, N. Georgiev, T. Mozume and H. Ishikawa, "Understanding the ultra-low intersubband saturation intensity in InGaAs-AlAsSb quantum wells," IEEE J. Quantum Electron. 39, 299-305 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited