OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 12880–12886

Tunable slow light device using quantum dot semiconductor laser

P. C. Peng, C. T. Lin, H. C. Kuo, W. K. Tsai, J. N. Liu, S. Chi, S. C. Wang, G. Lin, H. P. Yang, K. F. Lin, and J. Y. Chi  »View Author Affiliations


Optics Express, Vol. 14, Issue 26, pp. 12880-12886 (2006)
http://dx.doi.org/10.1364/OE.14.012880


View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This investigation experimentally demonstrates a tunable slow light device using a quantum dot (QD) semiconductor laser. The QD semiconductor laser at 1.3 µm fabricated on a GaAs substrate is grown by molecular beam epitaxy. Tunable slow light can be achieved by adjusting the bias current and wavelength detuning. The slow light device operated under probe signal from 5 to 10 GHz is presented. Moreover, we also demonstrate that the tunable slow light device can be used in a subcarrier multiplexed system.

© 2006 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.1150) Optical devices : All-optical devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 17, 2006
Revised Manuscript: December 5, 2006
Manuscript Accepted: December 6, 2006
Published: December 22, 2006

Citation
P. C. Peng, C. T. Lin, H. C. Kuo, W. K. Tsai, J. N. Liu, S. Chi, S. C. Wang, G. Lin, H. P. Yang, K. F. Lin, and J. Y. Chi, "Tunable slow light device using quantum dot semiconductor laser," Opt. Express 14, 12880-12886 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-12880


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, "Applications of slow light in telecommunications," Optics & Photonics News 19, 18-23 (2006). [CrossRef]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 m/s in an ultracold atomic gas," Nature 397, 594-598 (1999). [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow-light propagation in a room-temperature solid," Science 301, 200-202 (2003). [CrossRef] [PubMed]
  4. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  5. K. Y. Song, K. S. Abedin, K. Hotate, M. González Herráez, and L. Thévenaz, "Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber," Opt. Express 14, 5860-5865 (2006). [CrossRef] [PubMed]
  6. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005). [CrossRef] [PubMed]
  7. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005). [CrossRef] [PubMed]
  8. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004). [CrossRef] [PubMed]
  9. X. Zhao, P. Palinginis, B. Pesala, C. J. Chang-Hasnain, and P. Hemmer, "Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier," Opt. Express 13, 7899-7904 (2005). [CrossRef] [PubMed]
  10. H. Su, P. Kondratko, and S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4800-4807 (2006). [CrossRef] [PubMed]
  11. H. Su and S. L. Chuang, "Room-temperature slow light with semiconductor quantum-dot devices," Opt. Lett. 31, 271-273 (2006). [CrossRef] [PubMed]
  12. H. Su, and S. L. Chuang, "Room temperature slow and fast light in quantum-dot semiconductor optical amplifiers," Applied Physics Letters 88,. 061102 (2006). [CrossRef]
  13. D. Bimberg, "Quantum dots for lasers, amplifiers and computing," Journal of Physics D: Applied Physics 38, 2055-2058 (2005). [CrossRef]
  14. N. N. Ledentsov, "Long-wavelength quantum-dot lasers on GaAs substrates: from media to device concepts," IEEE Journal of Selected Topics in Quantum Electronics 8, 1015 - 1024 (2002). [CrossRef]
  15. V. M. Ustinov, N. A. Maleev, A. R. Kovsh, and A. E. Zhukov, "Quantum dot VCSELs," Physica Status Solidi A 202, 396-402 (2005). [CrossRef]
  16. H. P. Yang, Y. H. Chang, F. I. Lai, H. C. Yu, Y. J. Hsu, G. Lin, R. S. Hsiao, H. C. Kuo, S. C. Wang, and J. Y. Chi, "Singlemode InAs quantum dot photonic crystal VCSELs," Electronics Letters 41, 1130-1132 (2005). [CrossRef]
  17. Y. H. Chang, P. C. Peng, W. K. Tsai, G. Lin, F. I. Lai, R. S. Hsiao, H. P. Yang, H. C. Yu, K. F. Lin, J. Y. Chi, S. C. Wang, and H. C. Kuo, "Singlemode monolithic quantum-dot VCSEL in 1.3 μm with side-mode suppression ratio over 30dB," IEEE Photonics Technology Letters 18, 847-849 (2006). [CrossRef]
  18. I. Kaminow and T. Li, Optical Fiber Telecommunications IVB (Academic Press, San Diego, 2002), Chap. 15.
  19. O. H. Adamczyk, A. B. Sahin, Y. Qian, S. Lee, and A. E. Willner, "Statistics of PMD-induced power fading for intensity-modulated double-sideband and single-sideband microwave and millimeter-wave signals," IEEE Transactions on Microwave Theory and Techniques 49, 1962-1967 (2001). [CrossRef]
  20. H. Y. Pua, K. Peddanarappagari, B. Zhu, C. Allen, K. Demarest, and R. Hui, "An adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: Theory and demonstration," Journal of Lightwave Technology 18, 832-841 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited