OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 12984–12993

Time evolution of the second-order nonlinear distribution of poled Infrasil samples during annealing experiments

Y. Quiquempois, A. Kudlinski, G. Martinelli, G. A. Quintero, P. M. P. Gouvea, I. C. S. Carvalho, and Walter Margulis  »View Author Affiliations

Optics Express, Vol. 14, Issue 26, pp. 12984-12993 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spatial distribution of the second-order nonlinearity induced in thermally poled Infrasil silica samples is recorded after thermal annealing experiments. Two regimes have been studied: short and long poling durations. For short poling durations, the observations are in good agreement with a model where only one ion type recombines inside the depletion region. The nonlinear distribution and erasure observed for the other case are well explained by considering the addition of another positive-charged ion injected during the poling process. This second ion acts as a barrier during thermal annealing and reduces the mobility of the first one.

© 2006 Optical Society of America

OCIS Codes
(160.6030) Materials : Silica
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:
Nonlinear Optics

Original Manuscript: September 11, 2006
Revised Manuscript: December 4, 2006
Manuscript Accepted: December 11, 2006
Published: December 22, 2006

Y. Quiquempois, A. Kudlinski, G. Martinelli, G. A. Quintero, P. M. Gouvea, I. C. Carvalho, and Walter Margulis, "Time evolution of the second-order nonlinear distribution of poled Infrasil samples during annealing experiments," Opt. Express 14, 12984-12993 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Myers, N. Mukherjee and S. R. J. Brueck, "Large second-order nonlinearity in poled fused silica," Opt. Lett. 16,1732-1734 (1991). [CrossRef] [PubMed]
  2. T. G. Alley, S. R. J. Brueck and R. A. Myers, "Space charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242,165-176 (1998). [CrossRef]
  3. A. Le Calvez, E. Freysz and A. Ducasse, "A model for second harmonic generation in poled glasses," Eur. Phys. J. D 1,223-226 (1998). [CrossRef]
  4. P. G. Kazansky and P. St. J. Russel, "Thermally poled glass: frozen-in electric field or oriented dipoles?" Opt. Commun. 110,611-614 (1994). [CrossRef]
  5. A. Kudlinski, G. Martinelli and Y. Quiquempois, "Time evolution of second-order nonlinear profiles induced within thermally poled silica samples," Opt. Lett. 30,1039-1041 (2005). [CrossRef] [PubMed]
  6. A. Kudlinski, Y. Quiquempois and G. Martinelli, "Modeling the |x(2) susceptibility time-evolution in thermally poled fused silica," Opt. Express 13,8015-8024 (2005). [CrossRef] [PubMed]
  7. D. Faccio, V. Pruneri and P. G. Kazansky, "Dynamics of the second-order nonlinearity in thermally poled silica glass," Appl. Phys. Lett. 79,2687-2689 (2001). [CrossRef]
  8. N. Mukherjee, R. A. Myers and S. R. J. Brueck, "Dynamics of second-harmonic generation in fused silica," J. Opt. Soc. Am. B 11,665-669 (1994). [CrossRef]
  9. O. Deparis, C. Corbari and P. G. Kazansky, "Enhanced stability of the second-order optical nonlinearity in poled glasses," Appl. Phys. Lett. 84,4857-4859 (2004). [CrossRef]
  10. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache and G. Martinelli, "Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution," Appl. Phys. Lett. 83,3623-3625 (2003). [CrossRef]
  11. W. Margulis and F. Laurell, "Interferometric study of poled glass under etching," Opt. Lett. 21,1786-1788 (1996). [CrossRef] [PubMed]
  12. Y. Quiquempois, A. Kudlinski and G. Martinelli, "Zero-potential condition in thermally poled silica samples: evidence of a negative electric field outside the depletion layer," J. Opt. Soc. Am. B 22,598-604 (2005). [CrossRef]
  13. A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche and W. Margulis, "Time evolution of depletion region in poled silica," Appl. Phys. Lett. 82,2948-2950 (2003). [CrossRef]
  14. M. Tomozawa and D.W. Shin, "Charge carrier concentration and mobility of ions in a silica glass," J. Non-Cryst. Solids 241,140-148 (1998). [CrossRef]
  15. Y. Quiquempois, N. Godbout and S. Lacroix, "Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset of a second-order nonlinearity," Phys. Rev. A 65,043816 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2723 KB)     
» Media 2: AVI (2246 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited