OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 13021–13029

Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves

Yongyao Chen, Zhenming Song, Yanfeng Li, Minglie Hu, Qirong Xing, Zhigang Zhang, Lu Chai, and Ching-Yue Wang  »View Author Affiliations


Optics Express, Vol. 14, Issue 26, pp. 13021-13029 (2006)
http://dx.doi.org/10.1364/OE.14.013021


View Full Text Article

Enhanced HTML    Acrobat PDF (276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we explore the existence of electromagnetic surface bound modes on a perfect metal wire milled with arrays of subwavelength grooves. The surface modes are axially symmetric transverse magnetic (TM) waves and have the same polarization state with the dominant propagating surface plasmon polaritons on the real metal wires. The dispersion of the fundamental surface mode has close resemblance with the dispersion of the surface plasmon polaritons. Moreover, we note that for TM polarization this metallic structure can be equivalent to a dielectric coated metal wire with defined geometrical parameters and effective refractive index of the dielectric coating. This metallic structure is expected to have some potential applications in the optical research in microwave or THz region.

© 2006 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 19, 2006
Revised Manuscript: October 29, 2006
Manuscript Accepted: October 29, 2006
Published: December 22, 2006

Citation
Yongyao Chen, Zhenming Song, Yanfeng Li, Minglie Hu, Qirong Xing, Zhigang Zhang, Lu Chai, and Ching-Yue Wang, "Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves," Opt. Express 14, 13021-13029 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-13021


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Proc. R. Soc. London 18, 269-275 (1902)
  2. H. Raether, Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  4. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114 (2001). [CrossRef] [PubMed]
  5. J. A. Porto, F. J. Garcýa-Vidal, and J. B. Pendry "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999). [CrossRef]
  6. D. Qu, D. Grischkowsky, and W. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896-898 (2004). [CrossRef] [PubMed]
  7. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996). [CrossRef]
  8. S. C. Kitson, W. L. Barnes, and J. R. Sambles, "A full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996). [CrossRef] [PubMed]
  9. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). [CrossRef] [PubMed]
  10. D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface" Opt. Lett. 29, 1069-1071 (2004). [CrossRef] [PubMed]
  11. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005). [CrossRef]
  12. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  13. T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904-161906 (2005). [CrossRef]
  14. T.-I. Jeon and D. Grischkowsky "THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet," Appl. Phys. Lett. 88, 061113-061115 (2006). [CrossRef]
  15. H. M. Barlow, A. L. Cullen, Proc. IEE 10, 329 (1953). & R. Collin, Field Theory of Guided Waves (Wiley, NewYork, ed. 2, 1990)
  16. L. Brillouin, "Wave guides for slow waves," J. Appl. Phys 19, 1023-1041 (1948). [CrossRef]
  17. R. S. Elliott, "On the theory of corrugated plane surfaces," IRE Trans Antennas Propag  AP-2, 71-81 (1954).
  18. J. T. Shen, P. B. Catrysse, and S. Fan, "Mechanism for designing metallic metamaterials with a high index of refraction," Phys. Rev. Lett. 94, 197401 (2005). [CrossRef] [PubMed]
  19. M. Qiu "Photonic band structures for surface waves on structured metal surfaces," Opt. Express 13, 7583-7588 (2005). [CrossRef] [PubMed]
  20. F. J. Garcýa de Abajo, and J. J. Saenz "Electromagnetic surface modes in structured perfect-conductor surfaces," Phys. Rev. Lett. 95, 233901 (2005). [CrossRef] [PubMed]
  21. F. J. Garcia-Vidal, L Martýn-Moreno and J B Pendry "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005). [CrossRef]
  22. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal "Mimicking surface Plasmons with structured surfaces" Science 305, 847-848 (2004). [CrossRef] [PubMed]
  23. A. P. Hibbins, B. R. Evans, J. Roy Sambles "Experimental verification of designer surface Plasmons," Science 308, 670-672 (2005). [CrossRef] [PubMed]
  24. G. Goubau, "Surface waves and their application to transmission lines," J. Appl. Phys. 21, 1119-1128 (1950). [CrossRef]
  25. Q. Cao and J. Jahns "Azimuthally polarized surface plasmons as effective terahertz waveguides," Opt. Express 13, 511-518 (2005). [CrossRef] [PubMed]
  26. K. Wang and D. M. Mittleman, "Guided propagation of terahertz pulses on metal wires," J. Opt. Soc. Am. B 22, 2001-2008 (2005). [CrossRef]
  27. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon Press, Oxford, 1975).
  28. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, "Surface polaritons in a circularly cylindrical interface: surface plasmons," Phys. Rev. B 10, 3038-3051 (1974). [CrossRef]
  29. U. Schröter and A. Dereux, "Surface plasmon polaritons on metal cylinders with dielectric core," Phys. Rev. B 64, 125420 (2001). [CrossRef]
  30. K. Wang and D. M. Mittleman "Dispersion of Surface Plasmon Polaritons on metal wires in the Terahertz frequency range" Phys. Rev. Lett. 96, 157401 (2006). [CrossRef] [PubMed]
  31. The surface plasmon frequency is determined by where is the bulk plasma frequency of metal
  32. T. Lopez-Rios and A. Wirgin, "Role of waveguide and surface plasmon resonances in surface-enhanced Raman scattering at coldly evaporated metallic films," Solid State Commun. 52, 197-201 (1984). [CrossRef]
  33. R. Collin, Field Theory of Guided Waves. (New York: McGraw-Hill, 1960).
  34. S. A. Maier and S. R. Andrews "Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces," Appl. Phys. Lett. 88, 251120-251122 (2006). [CrossRef]
  35. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman "Enhanced coupling of terahertz radiation to cylindrical wire waveguides," Opt. Express. 14, 279-290 (2006). [CrossRef]
  36. H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Opt. Express 13, 763-769 (2005). [CrossRef] [PubMed]
  37. A. Agrawal, H. Cao, and A. Nahata, "Time-domain analysis of enhanced transmission through a single subwavelength aperture," Opt. Express 13, 3535-3542 (2005). [CrossRef] [PubMed]
  38. H. Cao and A. Nahata, "Coupling of terahertz pulsed onto a single metal wire waveguide using milled grooves," Opt. Express 13, 7028-7034 (2005). [CrossRef] [PubMed]
  39. S. C. Jacobsen, D. L. Wells, C. C. Davis, and J. E. Wood, "Fabrication of micro-structures using nonplanar lithography (NPL)," presented at the IEEE Micro Electro Mechanical Systems Nara, Japan, 1991. http://ieeexplore.ieee.org/iel4/5306/14399/00659766.pdf?arnumber=659766 [CrossRef]
  40. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett., in press (2006), arXiv:physics/0610012. http://arxiv.org/abs/physics/0610012 [CrossRef] [PubMed]
  41. Note: After submitting our manuscript to Optics Express on 09/18/2006, we found that S.A. Maier et al. proposed basically the same structure but focusing on different aspects other than those in our manuscript. We think that the excellent work proposed by S. A. Maier et al. will open up possibilities to important applications in the THz optical research, and it is very necessary to incorporate their work into our paper in order to enrich our contents and emphasize the potential applications of this metallic structure in the optical research.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited