OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 13030–13042

Figures of merit for surface plasmon waveguides

Pierre Berini  »View Author Affiliations

Optics Express, Vol. 14, Issue 26, pp. 13030-13042 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three figures of merit are proposed as quality measures for surface plasmon waveguides. They are defined as benefit-to-cost ratios where the benefit is confinement and the cost is attenuation. Three different ways of measuring confinement are considered, leading to three figures of merit. One of the figures of merit is connected to the quality factor. The figures of merit were then used to assess and compare the wavelength response of three popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. Closed form expressions are given for the figures of merit of the single metal-dielectric interface.

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: October 2, 2006
Manuscript Accepted: December 11, 2006
Published: December 22, 2006

Pierre Berini, "Figures of merit for surface plasmon waveguides," Opt. Express 14, 13030-13042 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  2. W. L. Barnes, "Surface plasmon-polariton length scales: a route to sub-wavelength optics," J. Opt. A: Pure Appl. Opt. 8, S87-S93 (2006). [CrossRef]
  3. E. N. Economou, "Surface Plasmons in thin Films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  4. J. J. Burke, G. I. Stegeman and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  5. J. A. Dionne, L. A. Sweatlock, H. A. Atwater and A. Polman, "Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006). [CrossRef]
  6. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999). [CrossRef]
  7. P. Berini, "Plasmon polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  8. R. Charbonneau, P. Berini, E. Berolo and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000). [CrossRef]
  9. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner and F. R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett.,  7951-53 (2001). [CrossRef]
  10. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001). [CrossRef]
  11. R. Nikolajsen, K. Leosson, I. Salakhutdinov and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003) [CrossRef]
  12. I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002). [CrossRef]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef]
  14. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett.,  87261114 (2005). [CrossRef]
  15. W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef]
  16. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  17. R. Zia, M. D. Selker, P. B. Catrysse and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2006). [CrossRef]
  18. L. Thylén and E. Berglind, "Nanophotonics and negative ε materials," J. Zheijiang University: Science A 7, 41-44 (2006). [CrossRef]
  19. L. J. Sherry, S.-H. Chang, G. C. Schatz and R. P. Van Duyne, "Localized surface plasmon resonance Spectroscopy of single silver nanocubes," Nanoletters 5, 2034-2038 (2005). [CrossRef]
  20. S. A. Maier, "Effective mode volume of nanoscale plasmon cavities," Opt. Quantum Electron. 38, 257-267 (2006). [CrossRef]
  21. S. A. Maier, "Plasmonic field enhancement and SERS in the effective mode volume picture," Opt. Express 14, 1957-1964 (2006). [CrossRef] [PubMed]
  22. D. Englund, I. Fushman and J Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005). [CrossRef] [PubMed]
  23. R.E. Collin, Field theory of Guided Waves (IEEE Press, Piscataway, New Jersey, 1991).
  24. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson and A. Y. Cho, "Long-wavelength (λ ≈ 8 - 11.5 µm) semiconductor lasers with waveguides based on surface plasmons," Opt. Lett. 23, 1366-1368 (1998). [CrossRef]
  25. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi and P. Berini, "Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides," Opt. Express 13, 4674-4682 (2005). [CrossRef] [PubMed]
  26. M. Fukui, V. C. Y. So, and R. Normandin, "Lifetimes of Surface Plasmons in thin Silver Films," Phys. Stat. Sol.(b) 91,K61-K64 (1979). [CrossRef]
  27. E. D. Palik, ed., Handbook of Optical Constants of Solids, (Academic Press, Orlando, Florida, 1985).
  28. P. Winsemius, F. F. van Kampen, H. P. Lengkeek and C. G. van Went, "Temperature dependence of the optical properties of Au, Ag and Cu," J. Phys. F: Met. Phys. 6, 1583-1606 (1976). [CrossRef]
  29. G. Leveque, C. G. Olson and D. W. Lynch, "Reflectance spectra and dielectric functions for Ag in the region of interband transitions," Phys. Rev. B 27, 4654-4660 (1983). [CrossRef]
  30. B. Brixner, "Refractive-index interpolation for fused silica," J. Opt. Soc. Am. 57, 674-676 (1967). [CrossRef]
  31. D. J. Nash and J. R. Sambles, "Surface plasmon-polariton study of the optical dielectric function of silver," J. Mod. Opt. 43, 81-91 (1996).
  32. E. T. Arakawa, M. W. Williams, R. N. Hamm and R. H. Ritchie, "Effect of damping on Surface Plasmon Dispersion," Phys. Rev. Lett. 31, 1127-1129 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited