OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 13050–13055

Standing wave surface plasmon mediated forward and backward scattering

Paul L. Rochon and Luc Lévesque  »View Author Affiliations

Optics Express, Vol. 14, Issue 26, pp. 13050-13055 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two superimposed gratings act to couple light to surface plasmon modes at a metal-air interface. A surface plasmon standing wave is created by generating two counter propagating plasmon waves. The wavelength and angle of incidence of the light that generates the surface plasmon standing wave can be selected by selecting the grating spacing of the couplers. The standing wave can then be out-coupled via the same gratings. In addition to affecting the transmission and reflection signals of the film the structure also enhances the light coupled into the forward- and the back-scattered direction.

© 2006 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: September 14, 2006
Revised Manuscript: November 20, 2006
Manuscript Accepted: November 20, 2006
Published: December 22, 2006

Paul L. Rochon and Luc Lévesque, "Standing wave surface plasmon mediated forward and backward scattering," Opt. Express 14, 13050-13055 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Yoon, G. Lee, S. Ho Song, C-H Oh and P-S. Kim, "Surface plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003). [CrossRef]
  2. C. Lenaerts, F. Michel, B. Tilkens, Y. Lion, and Y. Renotte, "High transmission efficiency for surface plasmon resonance by use of a dielectric grating," Appl. Opt. 44, 6017-6022 (2005). [CrossRef] [PubMed]
  3. T. Nikolajsen, K. Leosson and S. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004). [CrossRef]
  4. Y. Wang, "Wavelength selection with coupled surface plasmon waves," Appl. Phys. Lett. 82, 4385-4387 (2003). [CrossRef]
  5. W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  6. P. Sheng, R. S. Stepleman and P. N. Sanda, "Exact eigenfunctions for square-wave gratings: Application to diffraction and surface plasmon calculations," Phys. Rev. B 26, 2907-2916 (1982). [CrossRef]
  7. C. Duschl and W. Knoll, "Structural characterization of Langmuir-Blodgett multilayer assemblies by surface plasmon polariton field-enhanced Raman spectroscopy," J. Chem. Phys. 88, 4062-4069 (1988). [CrossRef]
  8. H. Knobloch and W. Knoll, "Raman-imaging and spectroscopy with surface plasmon light," J. Chem. Phys. 94, 835-841 (1991). [CrossRef]
  9. A. Nemetz, U. Fernandez and W. Knoll, "Surface plasmon field-enhanced Raman spectroscopy with double gratings," J. Appl. Phys. 75, 1582-1585 (1994). [CrossRef]
  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  11. W. L. Barnes, T. W. Priest, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996). [CrossRef]
  12. L. Lévesque and P. Rochon, "Surface plasmon photonic bandgap in azopolymer gratings sputtered with gold," J. Opt. Soc. Am. A 22, 2564-2568 (2005). [CrossRef]
  13. S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 13, 2670-2673 (1996). [CrossRef]
  14. W. C. Tan, T. W. Priest, and R. J. Sambles, "Resonant tunneling of light through thin metal films via strongly localized surface plasmons," Phys. Rev. B 62, 11, 134- 11 138 (2000). [CrossRef]
  15. A. Sentenac and A.-L. Fehrembach, "Angular tolerant resonant grating filters under oblique incidence," J. Opt Soc. Am. A 22, 475-480 (2005).
  16. F. Lemarchand, A. Sentenac, E. Cambril and H. Giovannini, " Study of the resonant behavior of waveguide gratings : increasing the angular tolerance of guided-mode filters," J. Opt. A: Pure Appl. Opt. 1, 545-551 (1999). [CrossRef]
  17. A. Natansohn and P. Rochon, "Photoinduced motion in Azo-containing Polymers," Chem. Rev. 102, 4139-4175 (2002). [CrossRef] [PubMed]
  18. W. Knoll, "Interfaces and thin films as seen by bound electromagnetic waves," Annu. Rev. Phys. Chem. 49, 569-638 (1998). [CrossRef]
  19. P. Uznanski and J. Pecherz, "Surface plasmon resonance of Azobenzene-incorporated polyelectrolyte thin films as an H+ indicator," J. Appl. Polym. Sci. 86, 1459-1464 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited