OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 13073–13082

100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors

Eleni Diamanti, Hiroki Takesue, Carsten Langrock, M. M. Fejer, and Yoshihisa Yamamoto  »View Author Affiliations


Optics Express, Vol. 14, Issue 26, pp. 13073-13082 (2006)
http://dx.doi.org/10.1364/OE.14.013073


View Full Text Article

Enhanced HTML    Acrobat PDF (277 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a quantum key distribution experiment in which keys that were secure against all individual eavesdropping attacks allowed by quantum mechanics were distributed over 100 km of optical fiber. We implemented the differential phase shift quantum key distribution protocol and used low timing jitter 1.55 µm single-photon detectors based on frequency up-conversion in periodically poled lithium niobate waveguides and silicon avalanche photodiodes. Based on the security analysis of the protocol against general individual attacks, we generated secure keys at a practical rate of 166 bit/s over 100 km of fiber. The use of the low jitter detectors also increased the sifted key generation rate to 2 Mbit/s over 10 km of fiber.

© 2006 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Quantum Optics

History
Original Manuscript: August 14, 2006
Revised Manuscript: November 8, 2006
Manuscript Accepted: November 8, 2006
Published: December 22, 2006

Citation
Eleni Diamanti, Hiroki Takesue, Carsten Langrock, M. M. Fejer, and Yoshihisa Yamamoto, "100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors," Opt. Express 14, 13073-13082 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-13073


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5,3-28 (1992). [CrossRef]
  2. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74,145-195 (2002). [CrossRef]
  3. T. Honjo, K. Inoue and H. Takahashi, "Differential-phase-shift quanum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29,2797-2799 (2004). [CrossRef] [PubMed]
  4. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue and Y. Yamamoto, "Differential phase shift quantum key distribution experiment over 105 km fibre," New J. Phys. 7,232 (2005). [CrossRef]
  5. C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84,3762-3764 (2004). [CrossRef]
  6. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, J. E. Nordholt, A. E. Lita and S. W. Nam, "Long distance decoy state quantum key distribution in optical fiber," quant-ph/0607186 (2006).
  7. C. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, (IEEE, New York, 1984), 175-179.
  8. N. Lütkenhaus, "Security against individual attacks for realistic quantum key distribution," Phys. Rev. A 61,052304 (2000). [CrossRef]
  9. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, "Limitations on practical Quantum Cryptography," Phys. Rev. Lett. 85,1330-1333 (2000). [CrossRef] [PubMed]
  10. C. Gobby, Z. L. Yuan and A. J. Shields, "Unconditionally secure quantum key distribution over 50 km of standard telecom fibre," Electron. Lett. 40,1603-1605 (2004). [CrossRef]
  11. Y. Zhao, B. Qi, X. Ma, H.-K. Lo and L. Qian, "Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber," Proc. IEEE Int. Symp. Inf. Theor. 2006, 2094-2098.
  12. H.-K. Lo, X. Ma and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94,230504 (2005). [CrossRef] [PubMed]
  13. X.-B. Wang, "Beating the Photon-number-splitting attack in practical Quantum Cryptography," Phys. Rev. Lett. 94,230503 (2005). [CrossRef] [PubMed]
  14. K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quanum key distribution," Phys. Rev. Lett. 89,037902 (2002). [CrossRef] [PubMed]
  15. K. Inoue, E. Waks and Y. Yamamoto, "Differential-phase-shift quanum key distribution using coherent light," Phys. Rev. A 68,022317 (2003). [CrossRef]
  16. E. Diamanti, H. Takesue, T. Honjo, K. Inoue and Y. Yamamoto, "Performance of various quantum-key distribution systems using 1.55-m up-conversion single-photon detectors," Phys. Rev. A 72,052311 (2005). [CrossRef]
  17. K. Inoue and T. Honjo, "Robustness of differential-phase-shift quanum key distribution against photon-number splitting attack," Phys. Rev. A 71,042305 (2005). [CrossRef]
  18. E. Waks, H. Takesue and Y. Yamamoto, "Security of differential-phase-shift quantum key distribution against individual attacks," Phys. Rev. A 73,012344 (2006). [CrossRef]
  19. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer and H. Takesue, "Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides," Opt. Lett. 30,1725-1727 (2005). [CrossRef] [PubMed]
  20. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New J. Phys. 8,32 (2006). [CrossRef]
  21. H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer and Y. Yamamoto, "10-GHz clock differential phase shift quantum key distribution experiment," Opt. Express 14,9522-9530 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited