OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 13120–13130

Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses

Sang-Hee Shim, David B. Strasfeld, and Martin T. Zanni  »View Author Affiliations


Optics Express, Vol. 14, Issue 26, pp. 13120-13130 (2006)
http://dx.doi.org/10.1364/OE.14.013120


View Full Text Article

Enhanced HTML    Acrobat PDF (368 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A germanium acousto-optic modulator was recently reported (Shim et al., Optics Letters, 31, 838, 2006) that is capable of generating phase and amplitude shaped femtosecond pulses directly in the mid-infrared. In this paper, the design, implementation and performance of this novel mid-IR shaper is described in detail as is the sub-50 fs optical parametric amplifier that provides large bandwidth for generation of complex pulse shapes. These details include the acoustic power and wavelength dependence of the deflection efficiency, the phase stability of the shaper, the synchronization of electronics, and a study on how the mid-IR bandwidth of the optical parametric amplifier depends on its optical configuration. With these details quantified, the accuracy of the device is tested by creating a series of shaped pulses that are characterized by cross-correlation with well-known mid-IR reference pulses and by simulations. Test waveforms include optimally compressed, phase-chirped and amplitude-modulated mid-IR pulses. The shaped pulses are of sufficient quality that they will enable new experiments in 2D IR spectroscopy and in the coherent control of vibrations in ground electronic states.

© 2006 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6290) Spectroscopy : Spectroscopy, four-wave mixing
(300.6340) Spectroscopy : Spectroscopy, infrared
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Ultrafast Optics

History
Original Manuscript: September 27, 2006
Revised Manuscript: December 1, 2006
Manuscript Accepted: December 1, 2006
Published: December 22, 2006

Citation
Sang-Hee Shim, David B. Strasfeld, and Martin T. Zanni, "Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses," Opt. Express 14, 13120-13130 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-13120


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. SeeS. Mukamel, "Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations," Annu. Rev. Phys. Chem. 51, 691 (2000). [CrossRef] [PubMed]
  2. N. H. Ge and R. M. Hochstrasser, "Femtosecond two-dimensional infrared spectroscopy: IR-COSY and THIRSTY," Phys. Chem. Comm. 5, 17 (2002) [CrossRef]
  3. P. Mukherjee, I. Kass, I. Arkin, and M. T. Zanni, "Picosecond dynamics of a membrane protein revealed by 2D IR," Proc. Natl. Acad. Sci. USA 103, 3528 (2006). [CrossRef] [PubMed]
  4. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser, and R. J. D. Miller, "Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O," Nature 434, 199 (2005). [CrossRef] [PubMed]
  5. V. Volkov, R. Schanz, and P. Hamm, "Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy," Opt. Lett. 30, 2010 (2005). [CrossRef] [PubMed]
  6. F. Ding, P. Mukherjee, and M. Zanni, "Passively correcting phase drift in 2D IR spectroscopy," Opt. Lett. 31, 2918 (2006). [CrossRef] [PubMed]
  7. E. C. Fulmer, F. Ding, P. Mukherjee, and M. T. Zanni, "Vibrational dynamics of ions in glass from fifth-order two-dimensional infrared spectroscopy," Phys. Rev. Lett. 94, (2005). [CrossRef] [PubMed]
  8. D. Abramavicius and S. Mukamel, "Disentangling multidimensional femtosecond spectra of excitons by pulse shaping with coherent control," J. Chem. Phys. 120, 8373 (2004). [CrossRef] [PubMed]
  9. P. F. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300, 1553 (2003). [CrossRef] [PubMed]
  10. S. H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, "Femtosecond pulse shaping directly in the mid-IR using acousto-optic modulation," Opt. Lett. 31, 838 (2006). [CrossRef] [PubMed]
  11. T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, "Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared," Opt. Lett. 27, 131 (2002). [CrossRef]
  12. H. S. Tan and W. S. Warren, "Mid infrared pulse shaping by optical parametric amplification and its application to optical free induction decay measurement," Opt. Express 11, 1021 (2003). [CrossRef] [PubMed]
  13. R. J. Gordon and S. A. Rice, "Active control of the dynamics of atoms and molecules," Annu. Rev. Phys. Chem. 48, 601 (1997). [CrossRef] [PubMed]
  14. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919 (1998). [CrossRef] [PubMed]
  15. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, "Chemistry - Whither the future of controlling quantum phenomena," Science 288, 824 (2000). [CrossRef] [PubMed]
  16. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929 (2000). [CrossRef]
  17. M. M. Wefers and K. A. Nelson, "Programmable Phase and Amplitude Femtosecond Pulse Shaping," Opt. Lett. 18, 2032 (1993). [CrossRef] [PubMed]
  18. M. A. Dugan, J. X. Tull, and W. S. Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B 14, 2348 (1997). [CrossRef]
  19. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, "Micromirror SLM for femtosecond pulse shaping in the ultraviolet," Appl. Phys. B 76, 711 (2003). [CrossRef]
  20. F. Eickemeyer, R. A. Kaindl, M. Woerner, T. Elsaesser, and A. M. Weiner, "Controlled shaping of ultrafast electric field transients in the mid-infrared spectral range," Opt. Lett. 25, 1472 (2000). [CrossRef]
  21. N. Belabas, J. P. Likforman, L. Canioni, B. Bousquet, and M. Joffre, "Coherent broadband pulse shaping in the mid infrared," Opt. Lett. 26, 743 (2001). [CrossRef]
  22. W. S. Warren, In unpublished work, W. S. Warren investigated picosecond mid-IR pulse shaping using a Ge AOM. (personal communication, 2006).
  23. P. Hamm, R. A. Kaindl, and J. Stenger, "Noise suppression in femtosecond mid-infrared light sources," Opt. Lett. 25, 1798 (2000). [CrossRef]
  24. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 mu m," J. Opt. Soc. Am. B 17, 2086 (2000). [CrossRef]
  25. A. Prakelt, M. Wollenhaupt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, "Compact, robust, and flexible setup for femtosecond pulse shaping," Rev. Sci. Instrum. 74, 4950 (2003). [CrossRef]
  26. Our previous publication of Ref. 9 incorrectly stated that the timing jitter was <1 ns.
  27. V. D. Kleiman, S. M. Arrivo, J. S. Melinger, and E. J. Heilweil, "Controlling condensed-phase vibrational excitation with tailored infrared pulses," Chem. Phys. 233, 207 (1998). [CrossRef]
  28. C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J. L. Martin, and M. Joffre, "Coherent vibrational climbing in carboxyhemoglobin," Proc. Natl. Acad. Sci. USA 101, 13216 (2004). [CrossRef] [PubMed]
  29. T. Hirayama and M. Sheik-Bahae, "Real-time chirp diagnostic for ultrashort laser pulses," Opt. Lett. 27, 860 (2002). [CrossRef]
  30. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277 (1997). [CrossRef]
  31. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792 (1998). [CrossRef]
  32. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified device for ultrashort-pulse measurement," Opt. Lett. 26, 932 (2001). [CrossRef]
  33. D. A. Bender, M. P. Hasselbeck, and M. Sheik-Bahae, "Sensitive ultrashort pulse chirp measurement," Opt. Lett. 31, 122 (2006). [CrossRef] [PubMed]
  34. C. Meier and M. C. Heitz, "Laser control of vibrational excitation in carboxyhemoglobin: A quantum wave packet study," J. Chem. Phys. 123, 044504 (2005). [CrossRef] [PubMed]
  35. N. Demirdoven, M. Khalil, O. Golonzka, and A. Tokmakoff, "Dispersion compensation with optical materials for compression of intense sub-100-fs mid-infrared pulses," Opt. Lett. 27, 433-435 (2002). [CrossRef]
  36. S. Beyvers, Y. Ohtsuki, and P. Saalfrank, "Optimal control in a dissipative system: Vibrational excitation of CO/Cu(100) by IR pulses," J. Chem. Phys. 124, 234706 (2006). [CrossRef] [PubMed]
  37. N. Doslic, K. Sundermann, L. Gonzalez, O. Mo, J. Giraud-Girard, and O. Kuhn, "Ultrafast photoinduced dissipative hydrogen switching dynamics in thioacetylacetone," Phys. Chem. Chem. Phys. 1, 1249 (1999). [CrossRef]
  38. Y. Ohta, T. Bando, T. Yoshimoto, K. Nishi, H. Nagao, and K. Nishikawa, "Control of intramolecular proton transfer by a laser field," J. Phys. Chem. A 105, 8031 (2001). [CrossRef]
  39. M. Petkovic and O. Kuhn, "Ultrafast wave packet dynamics of an intramolecular hydrogen transfer system: from vibrational motion to reaction control," Chem. Phys. 304, 91 (2004). [CrossRef]
  40. S. S. Skourtis, D. H. Waldeck, and D. N. Beratan, "Inelastic electron tunneling erases coupling-pathway interferences," J. Phys. Chem. B 108, 15511 (2004). [CrossRef]
  41. M. Artamonov, T. S. Ho, and H. Rabitz, "Quantum optimal control of molecular isomerization in the presence of a competing dissociation channel," J. Chem. Phys. 124, (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited