OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 26 — Dec. 25, 2006
  • pp: 13142–13150

Narrowband supercontinuum control using phase shaping

Dane R. Austin, Jeremy A. Bolger, C. Martijn de Sterke, Benjamin J. Eggleton, and Thomas G. Brown  »View Author Affiliations


Optics Express, Vol. 14, Issue 26, pp. 13142-13150 (2006)
http://dx.doi.org/10.1364/OE.14.013142


View Full Text Article

Enhanced HTML    Acrobat PDF (128 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study theoretically, numerically and experimentally the effect of self-phase modulation of ultrashort pulses with spectrally narrow phase features. We show that spectral enhancement and depletion is caused by changing the relative phase between the initial field and the nonlinearly generated components. Our theoretical results explain observations of supercontinuum enhancement by fiber Bragg gratings, and predict similar enhancements for spectrally shaped pulses in uniform fiber. As proof of principle, we demonstrate this effect in the laboratory using a femtosecond pulse shaper.

© 2006 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.1480) Optical devices : Bragg reflectors
(320.7140) Ultrafast optics : Ultrafast processes in fibers

ToC Category:
Ultrafast Optics

History
Original Manuscript: November 1, 2006
Revised Manuscript: December 8, 2006
Manuscript Accepted: December 8, 2006
Published: December 22, 2006

Citation
Dane R. Austin, Jeremy A. Bolger, C. Martijn de Sterke, Benjamin J. Eggleton, and Thomas G. Brown, "Narrowband supercontinuum control using phase shaping," Opt. Express 14, 13142-13150 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-13142


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Alfano, The supercontinuum laser source: fundamentals with updated references, 2nd ed. (Springer, New York, 2006).
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]
  3. A. S. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T.W. Hansch, "Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb," Phys. Rev. Lett. 84, 5102-5105 (2000). [CrossRef] [PubMed]
  4. K. Mori, T. Morioka, and M. Saruwatari, "Group-velocity dispersion measurement using supercontinuum picosecond pulses generated in an optical-fiber," Electron. Lett. 29, 987-989 (1993). [CrossRef]
  5. A. V. Husakou and J. Herrmann, "Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers," Phys. Rev. Lett. 87, 203901 (2001). [CrossRef] [PubMed]
  6. D. Türke, W. Wohlleben, J. Teipel, M. Motzkus, B. Kibler, J. Dudley, and H. Giessen, "Chirp-controlled soliton fission in tapered optical fibers," Appl. Phys. B 83, 37-42 (2006). [CrossRef]
  7. S. Xu, D. Reitze, and R. Windeler, "Controlling nonlinear processes in microstructured fibers using shaped pulses," Opt. Express 12, 4731-4741 (2004). [CrossRef] [PubMed]
  8. M. Tianprateep, J. Tada, T. Yamazaki, and F. Kannari, "Spectral-Shape-Controllable Supercontinuum Generation in Microstructured Fibers Using Adaptive Pulse Shaping Technique," Japanese J. of Appl. Phys. 43, 8059-8063 (2004). [CrossRef]
  9. P. S. Westbrook, J.W. Nicholson, K. S. Feder, and A. D. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Technol. 23, 13-18 (2005). [CrossRef]
  10. J. C. Travers, R. E. Kennedy, S. V. Popov, J. R. Taylor, H. Sabert, and B. Mangan, "Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber," Opt. Lett. 30, 1938-1940 (2005). [CrossRef] [PubMed]
  11. F. Lu, Y. Deng, and W. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005). [CrossRef] [PubMed]
  12. P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fibre grating," Appl. Phys. Lett. 85, 4600-4602 (2004). [CrossRef]
  13. K. Kim, S. A. Diddams, P. S. Westbrook, J. W. Nicholson, and K. S. Feder, "Improved stabilization of a 1.3 μm femtosecond optical frequency comb by use of a spectrally tailored continuum from a nonlinear fiber grating," Opt. Lett. 31, 277-279 (2006). [CrossRef] [PubMed]
  14. Y. Li, F. C. Salisbury, Z. Zhu, T. G. Brown, P. S. Westbrook, K. S. Feder, and R. S. Windeler, "Interaction of supercontinuum and Raman solitons with microstructure fiber gratings," Opt. Express 13, 998-1007 (2005). [CrossRef] [PubMed]
  15. P. S. Russell, "Bloch Wave Analysis of Dispersion and Pulse-Propagation in Pure Distributed Feedback Structures," J. Mod. Opt. 38, 1599-1619 (1991). [CrossRef]
  16. P. Westbrook and J. Nicholson, "Perturbative approach to continuum generation in a fiber Bragg grating," Opt. Express 14, 7610-7616 (2006). [CrossRef] [PubMed]
  17. C.-M. Chen and P. L. Kelley, "Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis," J. Opt. Soc. Am. B 19, 1961-1967 (2002). [CrossRef]
  18. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, "Bragg Grating Solitons," Phys. Rev. Lett. 76, 1627-1630 (1996). [CrossRef] [PubMed]
  19. A. Präkelt, M. Wollenhaupt, C. Sarpe-Tudoran, A. Assion, and T. Baumerta, "Filling a spectral hole via self-phase modulation," Appl. Phys. Lett. 87, 121113 (2005). [CrossRef]
  20. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited