OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 3 — Feb. 6, 2006
  • pp: 1006–1020

Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography

Yoshiaki Yasuno, Jun-ichiro Sugisaka, Yusuke Sando, Yoshifumi Nakamura, Shuichi Makita, Masahide Itoh, and Toyohiko Yatagai  »View Author Affiliations


Optics Express, Vol. 14, Issue 3, pp. 1006-1020 (2006)
http://dx.doi.org/10.1364/OE.14.001006


View Full Text Article

Enhanced HTML    Acrobat PDF (410 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical deconvolution method to cancel lateral defocus in Fourier domain optical coherence tomography (FD-OCT) is presented. This method uses a depth-dependent lateral point spread function and some approximations to design a deconvolution filter for the cancellation of lateral defocus. Improved lateral resolutions are theoretically estimated; consequently, the effect of lateral superresolution in this method is derived. The superresolution is experimentally confirmed by a razor blade test, and an intuitive physical interpretation of this effect is presented. The razor blade test also confirms that this method enhances the signal-to-noise ratio of OCT. This method is applied to OCT images of medical samples, in vivo human anterior eye segments, and exhibits its potential to cancel the defocusing of practical OCT images. The validity and restrictions involved in each approximation employed to design the deconvolution filter are discussed. A chromatic and a two-dimensional extensions of this method are also described.

© 2006 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.6640) Image processing : Superresolution
(110.2990) Imaging systems : Image formation theory
(110.4500) Imaging systems : Optical coherence tomography
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Image Processing

History
Original Manuscript: December 15, 2005
Revised Manuscript: January 20, 2006
Manuscript Accepted: January 23, 2006
Published: February 6, 2006

Virtual Issues
Vol. 1, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Yoshiaki Yasuno, Jun-ichiro Sugisaka, Yusuke Sando, Yoshifumi Nakamura, Shuichi Makita, Masahide Itoh, and Toyohiko Yatagai, "Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography," Opt. Express 14, 1006-1020 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-3-1006


Sort:  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999). [CrossRef]
  3. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002). [CrossRef]
  4. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995). [CrossRef]
  5. Gerd Häusler and Michael Walter Lindner, “ ‘Coherence radar’ and ‘spectral radar’ —New tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998). [CrossRef]
  6. P. Andretzky, M.W. Lindner, J. M. Herrmann, A. Schultz, M. Konzog, F. Kiesewetter, and G. H ausler , “Optical coherence tomography by spectral radar: dynamic range estimation and in-vivo measurements of skin,” Proc. SPIE 3567, 78–87 (1999). [CrossRef]
  7. T. Mitsui, “Dynamic range of optical reflectometry with spectral interferometry,” Jpn. J. Appl. Phys. 38, 6133– 6137 (1999). [CrossRef]
  8. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher,” Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>. [CrossRef] [PubMed]
  9. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma,” “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003). [CrossRef] [PubMed]
  10. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183">http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183</a>. [CrossRef] [PubMed]
  11. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953">http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2953</a>. [CrossRef] [PubMed]
  12. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367">http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-3-367</a>. [CrossRef] [PubMed]
  13. R. Huber,M.Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13 3513–3528 (2005), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3513">http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3513</a>. [CrossRef] [PubMed]
  14. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002). [CrossRef] [PubMed]
  15. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367–376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>. [CrossRef] [PubMed]
  16. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12, 2156–2165 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a>. [CrossRef] [PubMed]
  17. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, and J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404–2422 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>. [CrossRef] [PubMed]
  18. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12, 2435–2447 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2435</a>. [CrossRef] [PubMed]
  19. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 12, 444–452 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-444">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-444</a>. [CrossRef]
  20. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112, 1734–1746 (2005). [CrossRef] [PubMed]
  21. Z. P. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imagingof in vivo blood flow velocity usingoptical Doppler tomography,” Opt. Lett. 22, 1119–1121 (1997). [CrossRef] [PubMed]
  22. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. de Boer, and J. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood f low in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000). [CrossRef]
  23. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27, 1803–1805 (2002). [CrossRef]
  24. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, “Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples,” Appl. Phys. Lett. 85, 3023–3025 (2004). [CrossRef]
  25. J. Zhang, W. Jung, J. S. Nelson, and Z. P. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express 12, 6033–6039 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6033">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-6033</a>. [CrossRef] [PubMed]
  26. B. Park, M. Pierce, B. Cense, S. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 ∫m,” Opt. Express 13, 3931–3944 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3931</a>. [CrossRef] [PubMed]
  27. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116–3121 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3116</a>. [CrossRef] [PubMed]
  28. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra- high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490-3497 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3490</a>. [CrossRef] [PubMed]
  29. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M.Wojtkowski, and T. Bajraszewski, “Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography,” Opt. Lett. 29, 171–173 (2004). [CrossRef] [PubMed]
  30. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G.P. Li, and Z. P. Chen, “Frequency domain phase-resolved optical Doppler and Deppler variance tomography,” Opt. Commun. 242, 345–350 (2005). [CrossRef]
  31. J. Zhang, and Z. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13, 7449–7457 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7449">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7449</a>. [CrossRef] [PubMed]
  32. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30, 1162–1164 (2005). [CrossRef] [PubMed]
  33. C. Joo, T. Akkin, B. Cense, B. Park, and J. de Boer, “Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging,” Opt. Lett. 30, 2131–2133 (2005). [CrossRef] [PubMed]
  34. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13, 4792–4811 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792</a>. [CrossRef] [PubMed]
  35. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8532">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-21-8532</a>. [CrossRef] [PubMed]
  36. M. D. Kulkarni,C. W. Thomas, and J. A. Izatt, “Image enhancement in optical coherence tomography using deconvolution,” Electron. Lett. 33 1365–1367 (1997). [CrossRef]
  37. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66–75 (1998). [CrossRef]
  38. D. Piao, Q. Zhu, N. Dutta, S. Yan, and L. Otis, “Cancellation of coherent artifacts in optical coherence tomography imaging,” Appl. Opt. 40, 5124–5131 (2001). [CrossRef]
  39. I. J. Hsu, C.W. Sun, C.W. Lu, C. C. Yang, C. P. Chiang, and C.W. Lin, “Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography,” Appl. Opt. 42, 227–234 (2003). [CrossRef] [PubMed]
  40. M. Bashkansky, M.D. Duncan, J. Reintjes, and P.R. Battle, “Signal processing for improving field cross-correlation function in optical coherence tomography,” Appl. Opt. 37, 8137–8138 (1998).
  41. R. Tripathi, N. Nassif, J. Nelson, B. Park, and J. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002). [CrossRef]
  42. M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczy´nska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Radzewicz, “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246, 569–578 (2004). [CrossRef]
  43. E.g., James G. Fujimoto, “Handbook of optical coherence tomography,” Chapter 1, Edited by G.R. Bouma, G.J. Tearney, Marcel Dekker, Inc. (2002).
  44. D. J Smithies, T. Lindmo, Z. P. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998). [CrossRef] [PubMed]
  45. C. Dorrer, N. Belabas, J. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000). [CrossRef]
  46. E.g., J. W. Goodman, “Introduction to Fourier optics,” 2nd ed., The McGraw-Hill Companies, Inc. (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited