OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 3 — Feb. 6, 2006
  • pp: 1094–1105

Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots

Kartik Srinivasan, Matthew Borselli, Oskar Painter, Andreas Stintz, and Sanjay Krishna  »View Author Affiliations


Optics Express, Vol. 14, Issue 3, pp. 1094-1105 (2006)
http://dx.doi.org/10.1364/OE.14.001094


View Full Text Article

Enhanced HTML    Acrobat PDF (485 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The quality factor (Q), mode volume (V eff ), and room-temperature lasing threshold of microdisk cavities with embedded quantum dots (QDs) are investigated. Finite element method simulations of standing wave modes within the microdisk reveal that Veff can be as small as 2(λ/n)3 while maintaining radiation-limited Qs in excess of 105. Microdisks with a 2 μm diameter are fabricated in an AlGaAs material containing a single layer of InAs QDs with peak emission at λ = 1317 nm. For devices with Veff ~2 (λ/n)3, Qs as high as 1.2× 105 are measured passively in the 1.4 μm band, using an optical fiber taper waveguide. Optical pumping yields laser emission in the 1.3 μm band, with room temperature, continuous-wave thresholds as low as 1 μW of absorbed pump power. Out-coupling of the laser emission is also shown to be significantly enhanced through the use of optical fiber tapers, with a laser differential efficiency as high as ξ ~ 16% and out-coupling efficiency in excess of 28% measured after accounting for losses in the optical fiber system.

© 2006 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators
(270.0270) Quantum optics : Quantum optics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 17, 2005
Revised Manuscript: January 13, 2006
Manuscript Accepted: January 24, 2006
Published: February 6, 2006

Citation
Kartik Srinivasan, Matthew Borselli, Oskar Painter, Andreas Stintz, and Sanjay Krishna, "Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots," Opt. Express 14, 1094-1105 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-3-1094


Sort:  Journal  |  Reset  

References

  1. P. Michler, A. Kiraz, C. Becher, W. Schoenfeld, P. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science 290, 2282–2285 (2000). [CrossRef] [PubMed]
  2. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered Single Photons from a Quantum Dot,” Phys. Rev. Lett. 86, 1502–1505 (2001). [CrossRef] [PubMed]
  3. E. Moreau, I. Robert, J. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001). [CrossRef]
  4. J. Reithmaier, G. Sek, A. Loffer, C. Hoffman, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432, 197–200 (2004). [CrossRef] [PubMed]
  5. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, Q. Schenkin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef] [PubMed]
  6. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. Gérard, and J. Bloch, “Exciton photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett. 95 (2005). [CrossRef] [PubMed]
  7. H. Cao, J. Xu, W. Xiang, Y. Ma, S.-H. Chang, S. Ho, and G. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76, 3519–3521 (2000). [CrossRef]
  8. T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Room temperature continuous wave lasing InAs quantum-dot microdisks with air cladding,” Opt. Express 13, 1615–1620 (2005). [CrossRef] [PubMed]
  9. T. Yang, O. Schekin, J. O’Brien, and D. Deppe, “Room temperature, continuous-wave lasing near 1300 nm in microdisks with quantum dot active regions,” IEE Elec. Lett. 39 (2003).
  10. H. J. Kimble, “Strong Interactions of Single Atoms and Photons in Cavity QED,” Physica Scripta T76, 127–137 (1998). [CrossRef]
  11. J. Cirac, P. Zoller, H. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997). [CrossRef]
  12. E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef] [PubMed]
  13. A. Kiraz, M. Atature, and A. Imamoglu, “Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing,” Phys. Rev. A 69 (2004). [CrossRef]
  14. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode lasers,” Appl. Phys. Lett. 60, 289–291 (1992). [CrossRef]
  15. B. Gayral, J. M. Gérard, A. Lemaître, C. Dupuis, L. Manin, and J. L. Pelouard, “High-Q wet-etched GaAs microdisks containing InAs quantum boxes,” Appl. Phys. Lett. 75, 1908–1910 (1999). [CrossRef]
  16. K. Srinivasan, M. Borselli, T. Johnson, P. Barclay, O. Painter, A. Stintz, and S. Krishna, “Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots,” Appl. Phys. Lett. 86, 151106 (2005). [CrossRef]
  17. K. Srinivasan, A. Stintz, S. Krishna, and O. Painter, “Photoluminescence measurements of quantum-dot-containing semiconductor microdisk resonators using optical fiber taper waveguides,” Phys. Rev. B 72, 205318 (2005). [CrossRef]
  18. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817 (2005). [CrossRef]
  19. M. Borselli, T. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” submitted for publication (2005)
  20. L. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B 60, 13276–13279 (1999). [CrossRef]
  21. D. S. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995). [CrossRef] [PubMed]
  22. T. Kippenberg, S. Spillane, and K. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002). [CrossRef]
  23. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005). [CrossRef] [PubMed]
  24. The average diameter is taken at the center of the slab, or equivalently, is the average of the top and bottom diameters.
  25. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0:60Ga0:40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308(R) (2002).
  26. Note that γ≡γ is in general greater than half the total excitonic decay rate (γ√2) radiative decay rate (1/2τsp) for QD excitons, due to near-elastic scattering or dephasing events with, for example, acoustic phonons of the lattice.
  27. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10, 670–684 (2002). [PubMed]
  28. H.-Y. Ryu, M. Notomi, and Y.-H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294–4296 (2003). [CrossRef]
  29. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005). [CrossRef]
  30. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Photonic crystal nanocavity formed by local width modulation of line-defect with Q of one million,” In LEOS 2005, Post-Deadline Session PD 1.1, (IEEE Lasers and Electro-Optics Society, 2005).
  31. Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12, 3988–3995 (2004). [CrossRef] [PubMed]
  32. D. Englund, I. Fushman, and J. Vučković, “General recipe for designing photonic crystal cavities,” Opt. Express 13, 5961–5975 (2005). [CrossRef] [PubMed]
  33. A. Stintz, G. Liu, H. Li, L. Lester, and K. Malloy, “Low-Threshold Current Density 1.3-µm InAs Quantum-Dot Lasers with the Dots-in-a-Well (DWELL) structure,” IEEE Photonics Technol. Lett. 12, 591–593 (2000). [CrossRef]
  34. A. Loffler, J. Reithmaier, G. Sek, C. Hofmann, S. Reitzenstein, M. Kamp, and A. Forchel, “Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions,” Appl. Phys. Lett. 86, 111105 (2005). [CrossRef]
  35. As has been discussed recently in Ref. [36] this may not be an accurate model for QD state-filling, but for our simple analysis here it will suffice.
  36. H. Pask, H. Summer, and P. Blood, “Localized Recombination and Gain in Quantum Dots,” In Tech. Dig. Conf. on Lasers and Electro-Optics, CThH3, (Optical Society of America, Baltimore, MD, 2005).
  37. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers (Van Nostrand Reinhold, New York, NY, 1993).
  38. This estimate was based upon considering Purcell enhancement at RT for QDs spatially and spectrally aligned with the WGMs (FP ~ 6), and suppression of spontaneous emission for QDs spatially and spectrally misaligned from the WGMs (FP ~ 0:4). This simple estimate is consistent with accurate finite-difference time-domain calculations of similar sized microdisks[39].
  39. J. Vučković, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “FDTD Calculation of the Spontaneous Emission Coupling Factor in Optical Microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999). [CrossRef]
  40. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., New York, NY, 1995).
  41. T. Sosnowski, T. Norris, H. Jiang, J. Singh, K. Kamath, and P. Bhattacharya, “Rapid carrier relaxation in In0:4Ga0:60As/GaAs quantum dots characterized by differential transmission spectroscopy,” Phys. Rev. B 57, R9423–R9426 (1998). [CrossRef]
  42. D. Yarotski, R. Averitt, N. Negre, S. Crooker, A. Taylor, G. Donati, A. Stintz, L. Lester, and K. Malloy, “Ultrafast carrier-relaxation dynamics in self-assembled InAs/GaAs quantum dots,” J. Opt. Soc. Am. B 19, 1480–1484 (2002). [CrossRef]
  43. T. Ide, T. Baba, J. Tatebayashi, S. Iwamoto, T. Nakaoka, and Y. Arakawa, “Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature,” Appl. Phys. Lett. 85, 1326–1328 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited