OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 3 — Feb. 6, 2006
  • pp: 1125–1144

Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain

Chao Zhou, Guoqiang Yu, Daisuke Furuya, Joel Greenberg, Arjun Yodh, and Turgut Durduran  »View Author Affiliations


Optics Express, Vol. 14, Issue 3, pp. 1125-1144 (2006)
http://dx.doi.org/10.1364/OE.14.001125


View Full Text Article

Acrobat PDF (331 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.

© 2006 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 23, 2005
Revised Manuscript: January 18, 2006
Manuscript Accepted: January 30, 2006
Published: February 6, 2006

Virtual Issues
Vol. 1, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Chao Zhou, Guoqiang Yu, Daisuke Furuya, Joel Greenberg, Arjun Yodh, and Turgut Durduran, "Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain," Opt. Express 14, 1125-1144 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-3-1125


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Zauner and J. P. Muizelaar, Head Injury, Chapter 11 (Chapman and Hall, 1997).
  2. R. S. J. Frackowiak, G. L. Lenzi, T. Jones, and J. D. Heather, "Quantitative Measurement of Regional Cerebral Blood-Flow and Oxygen-Metabolism in Man Using O-15 and Positron Emission Tomography - Theory, Procedure, and Normal Values," J. Comput. Assist. Tomogr. 4, 727-736 (1980).
  3. D. S. Williams, J. A. Detre, J. S. Leigh, and A. P. Koretsky, "Magnetic resonance imaging of perfusion using spin inversion of arterial water." Proc. Natl. Acad. Sci. U. S. A. 89, 212-216 (1992). [CrossRef]
  4. J. A. Detre and D. C. Alsop, "Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system," Eur. J. Radiol. 30, 115-124 (1999). [CrossRef]
  5. G. Zaharchuk, J. Bogdanov, A. A., J. J. Marota, M. Shimizu-Sasamata, R. M. Weisskoff, K. K. Kwong, B. G. Jenkins, R. Weissleder, and B. R. Rosen, "Continuous assessment of perfusion by tagging including volume and water extraction (CAPTIVE): a steady-state contrast agent technique for measuring blood flow, relative blood volume fraction, and the water extraction fraction," Magn. Reson. Med. 40, 666-678. (1998). [CrossRef]
  6. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
  7. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, "Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation," Opt. Lett. 28, 28-30 (2003).
  8. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal Quantification of Cerebral Blood Flow During Functional Activation in Rat Somatosensory Cortex Using Laser-Speckle Flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
  9. C. Ayata, H. K. Shin, S. Salomone, Y. Ozdemir-Gursoy, D. A. Boas, A. K. Dunn, and M. A. Moskowitz, "Pronounced hypoperfusion during spreading depression in mouse cortex," J. Cereb. Blood Flow Metab. 24, 1172-1182 (2004).
  10. A. N. Nielsen, M. Fabricius, and M. Lauritzen, "Scanning laser-Doppler flowmetry of rat cerebral circulation during cortical spreading depression," J. Vasc. Res. 37, 513-522 (2000). [CrossRef]
  11. A. Yodh and B. Chance, "Spectroscopy and Imaging with Diffusing Light," Phys. Today 48, 34-40 (1995).
  12. A. G. Yodh and D. A. Boas, Biomedical Photonics (CRC Press, 2003). Chapter Functional Imaging with Diffusing Light.
  13. D. A. Boas, M. A. Franceschini, A. K. Dunn, and G. Strangman, "Non-Invasive imaging of cerebral activation with diffuse optical tomography," in Optical Imaging of Brain Function, R. Frostig, ed. (CRC Press, 2002).
  14. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef]
  15. A. H. Hielscher, "Optical tomographic imaging of small animals," Curr. Opin. Biotechnol. 16, 79-88 (2005). [CrossRef]
  16. A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997). [CrossRef]
  17. G. Gratton, M. Fabiani, P. M. Corballis, D. C. Hood, M. R. Goodman-Wood, J. Hirsch, K. Kim, D. Friedman, and E. Gratton, "Fast and localized event-related optical signals (EROS) in the human occipital cortex: comparisons with the visual evoked potential and fMRI." Neuroimage 6, 168-180 (1997). [CrossRef]
  18. B. W. Pogue and K. D. Paulsen, "High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of apriori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-1718 (1998).
  19. D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, "Noninvasive functional imaging of human brain using light," J. Cereb. Blood Flow Metab. 20, 469-477 (2000).
  20. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Signal Process. Mag. 18, 57-75 (2001). [CrossRef]
  21. D. M. Hueber,M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62. (2001). [CrossRef]
  22. A. Bluestone, G. Abdoulaev, C. Schmitz, R. Barbour, and A. Hielscher, "Three-dimensional optical tomography of hemodynamics in the human head," Opt. Express 9, 272-286 (2001).
  23. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. C. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, "Three-dimensional optical tomography of the premature infant brain," Phys. Med. Biol. 47, 4155-4166 (2002). [CrossRef]
  24. M. A. Franceschini and D. A. Boas, "Noninvasive measurement of neuronal activity with near-infrared optical imaging," Neuroimage 21, 372-386 (2004). [CrossRef]
  25. T. Wilcox, H. Bortfeld, R. Woods, E. Wruck, and D. A. Boas, "Using near-infrared spectroscopy to assess neural activation during object processing in infants," J. Biomed. Opt. 10, 011,010 (2005).
  26. E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, "Measurement of brain activity by near-infrared light," J. Biomed. Opt. 10, 011,008 (2005).
  27. J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, A. Gupta, R. Michalos,W. Mantulin, and E. Gratton, "Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach," J. Biomed. Opt. 9, 221-229 (2004). [CrossRef]
  28. J. P. Culver, T. Durduran, T. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003).
  29. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, "Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation," Opt. Lett. 29, 1766-1768 (2004). [CrossRef]
  30. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, "In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies," Phys. Med. Biol. 46, 2053-2065 (2001). [CrossRef]
  31. G. Q. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, "Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy," Clin. Cancer Res. 11, 3543-3552 (2005). [CrossRef]
  32. G. Q. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, R. E. Mohler, and A. G. Yodh, "Time-dependent blood flow and oxygenation in human skeletal muscles measured with noninvasive near-infrared diffuse optical spectroscopies," J. Biomed. Opt. 10, 024,027-1-12 (2005).
  33. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, "Diffuse Optical Measurement of Blood flow in Breast Tumors," Opt. Lett. 30, 2915-2917 (2005). [CrossRef]
  34. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, "Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy," J. Biomed. Opt. 10, 1-12 (2005).
  35. D. A. Boas and A. G. Yodh, "Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 14, 192-215 (1997).
  36. M. Heckmeier, S. E. Skipetrov, G. Maret, and R. Maynard, "Imaging of dynamic heterogeneities in multiplescattering media," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 14, 185-191 (1997).
  37. D. A. Boas, L. E. Campbell, and A. G. Yodh, "Scattering and Imaging with Diffusing Temporal Field Correla-tions," Phys. Rev. Lett. 75, 1855-1858 (1995). [CrossRef]
  38. A. A. P. Leao, "Spreading depression of activity in cerebral cortex," J. Neurophysiol. 7, 359-390 (1944).
  39. A. Gorji, "Spreading depression: a review of the clinical relevance," Brain Res. Rev. 38, 33-60 (2001). [CrossRef]
  40. G. G. Somjen, "Mechanisms of spreading depression and hypoxic spreading depression-like depolarization," Physiol. Rev. 81, 1065-1096 (2001).
  41. G. Maret and P. Wolf, "Multiple light scattering from disordered media. The effect of brownian motion of scatterers," Z. Phys. B. 65, 409-413 (1987). [CrossRef]
  42. D. Pine, D. Weitz, P. Chaikin, and Herbolzheimer, "Diffusing-wave spectroscopy," Phys. Rev. Lett. 60, 1134-1137 (1988).
  43. D. Boas, "Diffuse Photon Probes of Structural and Dynamical Properties of Turbid Media: Theory and Biomedical Applications," Ph.D., University of Pennsylvania (1996).
  44. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 11, 2727-2741 (1994).
  45. C. Menon, G. M. Polin, I. Prabakaran, A. Hsi, C. Cheung, J. P. Culver, J. F. Pingpank, C. S. Sehgal, A. G. Yodh, D. G. Buerk, and D. L. Fraker, "An integrated approach to measuring tumor oxygen status using human melanoma xenografts as a model," Cancer Res. 63, 7232-7240 (2003).
  46. T. Durduran, "Noninvasive measurements of tissue hemodynamics with hybrid diffuse optical methods," Ph.D., University of Pennsylvania (2004).
  47. G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. J. Wang, J. M. Murphy, and A. G. Yodh, "Concurrent Optical-MRI Measurement of Limb Blood Flow/Perfusion," Opt. Lett. in prep (2005).
  48. S. Rice, "Mathematical analysis of random noise," in Noise and Stochastic Processes, N.Wax, ed., p. 133 (Dover, New York, 1954).
  49. A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
  50. S. R. Arridge, "Optical Tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  51. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Optics 38, 2950-2961 (1999).
  52. M. A. Oleary, D. A. Boas, B. Chance, and A. G. Yodh, "Refraction of diffuse photon density waves," Phys. Rev. Lett. 69, 2658-2661 (1992).
  53. D. A. Boas, M. A. Oleary, B. Chance, and A. G. Yodh, "Scattering and Wavelength Transduction of Diffuse Photon Density Waves," Phys. Rev. E 47, R2999-R3002 (1993). [CrossRef]
  54. D. A. Boas, M. A. Oleary, B. Chance, and A. G. Yodh, "Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media - analytic solution and applications," Proc. Natl. Acad. Sci. U. S. A. 91, 4887-4891 (1994). [CrossRef]
  55. K. Schatzel, "Noise in photon-correlation and photon structure functions," Optica ACTA 30, 155-166 (1983).
  56. The solution to the correlation diffusion equation, i.e. Eq. (2), is a more accurate description for g1 (|). However, when the delay time | is small (|_ 3 ∝a ∝_sk2 0 〈Db) , g1 (|) can be simplified as an exponential decay function. On the other hand, we have compared the noise calculated from Eq. (8) assuming exponential decay and the noise calculated numerically using exact the semi-infinite solution as input. No significant difference was observed.
  57. D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938-1945 (1974). [CrossRef]
  58. K. Schatzel, M. Drewel, and S. Stimac, "Photon-Correlation Measurements at Large Lag Times - Improving Statistical Accuracy," J. Mod. Opt. 35, 711-718 (1988).
  59. U. Meseth, T. Wohland, R. Rigler, and H. Vogel, "Resolution of fluorescence correlation measurements," Biophys. J. 76, 1619-1631 (1999).
  60. T. Wohland, R. Rigler, and H. Vogel, "The standard deviation in fluorescence correlation spectroscopy," Biophys. J. 80, 2987-2999 (2001).
  61. S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear algebra, 3rd ed. (Prentice Hall, 1997).
  62. P. Hansen, "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Rev. 34, 561-580 (1992). [CrossRef]
  63. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, "Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging," Med. Phys. 30, 235-247 (2003). [CrossRef]
  64. X. M. Song, B. W. Pogue, S. D. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, "Automated region detection based on the contrast-to-noise ratio in near-infrared tomography," Appl. Optics 43, 1053-1062 (2004).
  65. M. A. O’Leary, "Imaging with diffuse photon density waves," Ph.D., Unversity of Pennsylvania (1996).
  66. C. Zhou, T. Durduran, G. Yu, and A. G. Yodh, "Optimizing Image reconstruction of tissue blood flow by diffuse correlation tomography," in Photonics West, SPIE, vol. 4955-43, pp. 287-95 (San Jose, CA, 2003).
  67. P. E. Greenwood and M. S. Nikulin, A guide to chi-squared testing, Wiley series in probability and statistics. Applied probability and statistics (New York : John Wiley & Sons, 1996).
  68. M. Kohl, U. Lindauer, U. Dirnagl, and A. Villringer, "Separation of changes in light scattering and chromophore concentrations during cortical spreading depression in rats," Opt. Lett. 23, 555-557 (1998).
  69. R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike, "Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model," Magn. Reson. Med. 42, 849-63 (1999). [CrossRef]
  70. M. Lauritzen and M. Fabricius, "Real time laser-Doppler perfusion imaging of cortical spreading depression in rat neocortex," Neuroreport 6, 1271-1273 (1995).
  71. A. Mayevsky and H. R. Weiss, "Cerebral Blood-Flow and Oxygen-Consumption in Cortical Spreading Depression," J. Cereb. Blood Flow Metab. 11, 829-836 (1991).
  72. A. Mayevsky and B. Chance, "Repetitive Patterns of Metabolic Changes During Cortical Spreading Depression of Awake Rat," Brain Res. 65, 529-533 (1974). [CrossRef]
  73. J. Sonn and A. Mayevsky, "Effects of brain oxygenation on metabolic, hemodynamic, ionic and electrical responses to spreading depression in the rat," Brain Res. 882, 212-216 (2000). [CrossRef]
  74. L. D. Lukyanov and J. Bures, "Changes in PO2 Due to Spreading Depression in Cortex and Nucleus Caudatus of Rat," Physiologia Bohemoslovaca 16, 449-455 (1967).
  75. W. B. Davenport and W. L. Root, Random Signals and Noise (McGraw-Hill, 1958).
  76. C. D. Cantrell, "N-Fold Photonelectric counting statistics of gaussian light," Phys. Rev. A 1, 672-685 (1970). [CrossRef]
  77. P. A. Lemieux and D. J. Durian, "Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions," J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 16, 1651-1664 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (1492 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited