OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 3 — Feb. 6, 2006
  • pp: 1208–1222

Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters

Miloš A. Popović, Christina Manolatou, and Michael R. Watts  »View Author Affiliations


Optics Express, Vol. 14, Issue 3, pp. 1208-1222 (2006)
http://dx.doi.org/10.1364/OE.14.001208


View Full Text Article

Enhanced HTML    Acrobat PDF (1058 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coupling-induced resonance frequency shifts (CIFS) are theoretically described, and are found to be an important fundamental source of resonance frequency mismatch between coupled optical cavities that would be degenerate in isolation. Their deleterious effect on high-order resonant filter responses and complete correction by pre-distortion are described. Analysis of the physical effects contributing to CIFS shows that a positive index perturbation may bring about a resonance shift of either sign. Higher-order CIFS effects, the scaling of CIFS-caused impairment with finesse, FSR and index contrast, and the tolerability of frequency mismatch in telecom-grade filters are addressed. The results also suggest possible designs and applications for CIFS-free coupled-resonator systems.

© 2006 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Optical Devices

History
Original Manuscript: November 28, 2005
Revised Manuscript: January 20, 2006
Manuscript Accepted: January 23, 2006
Published: February 6, 2006

Citation
Miloš Popovic, Christina Manolatou, and Michael Watts, "Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters," Opt. Express 14, 1208-1222 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-3-1208


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  2. S. Blair and Y. Chen, "Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities," Appl. Opt. 40, 570-582 (2001). [CrossRef]
  3. P. P. Absil, J. V. Hryniewicz, B. E. Little, P. S. Cho, R. A. Wilson, L. G. Joneckis and P.-T. Ho, "Wavelength conversion in GaAs microring resonators," Opt. Lett. 25, 554-556 (2000). [CrossRef]
  4. B. Liu, A. Shakouri and J. E. Bowers, "Passive microring-resonator-coupled lasers," Appl. Phys. Lett. 79, 3561-3563 (2001). [CrossRef]
  5. M. Lončar, T. Yoshie, Y. Qiu, P. Gogna and A. Scherer, "Low-threshold photonic crystal laser," in Proc. SPIE5000, 16-26 (2003). [CrossRef]
  6. C. K. Madsen and J. H. Zhao, Optical filter design and analysis: a signal processing approach (Wiley, 1999).
  7. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou and H. A. Haus, "Theoretical analysis of channel drop tunneling processes," Phys. Rev. B 59, 15882-15892 (1999). [CrossRef]
  8. H. A. Haus, B. E. Little, M. A. Popović, S. T. Chu, M. R. Watts and C. Manolatou, "Optical resonators and filters," in Optical Microcavities, K. Vahala, ed. (World Scientific, Singapore, 2004).
  9. H. A. Haus, "Microwaves and Photonics," in OSA TOPS 23 Symposium on Electro-Optics: Present and Future, H.A. Haus, ed., (Optical Society of America, Washington, DC, 1998), pp. 2-8.
  10. M. J. Khan, C. Manolatou, S. Fan, P. R. Villeneuve, H. A. Haus and J. D. Joannopoulos, "Mode-coupling analysis of multipole symmetric resonant add/drop filters," IEEE J. Quantum Electron. 35, 1451-1460 (1999). [CrossRef]
  11. A. Melloni and M. Martinelli, "Synthesis of direct-coupled-resonators bandpass filters for WDM systems," J. Lightwave Technol. 20, 296-303 (2002). [CrossRef]
  12. R. Orta, P. Savi, R. Tascone, and D. Trinchero, "Synthesis of multiple-ring-resonator filters for optical systems," IEEE Photonics Technol. Lett. 7, 1447-1449 (1995). [CrossRef]
  13. C. Manolatou, M. A. Popović, P. T. Rakich, T. Barwicz, H. A. Haus and E. P. Ippen, "Spectral anomalies due to coupling-induced frequency shifts in dielectric coupled-resonator filters," in Proceedings of Optical Fiber Communication Conference on CD-ROM (Los Angeles, CA, February 2004), TuD5.
  14. T. Barwicz, M. A. Popović, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen and H. I. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1437. [CrossRef] [PubMed]
  15. M. A. Popović, M. R. Watts, T. Barwicz, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kärtner and H. I. Smith, "High-index-contrast, wide-FSR microring-resonator filter design and realization with frequency-shift compensation," in Proc. Optical Fiber Comm. Conf. (Optical Society of America, Washington, DC, 2005).
  16. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
  17. H. A. Haus and W.-P. Huang, "Coupled-mode theory," inProc. IEEE 79, 1505-1518 (1991).
  18. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen and H. I. Smith, "Fabrication of add-drop filters based on frequency-matched microring resonators," submitted to J. Lightwave Technol.
  19. M. Popović, "Complex-frequency leaky mode computations using PML boundary layers for dielectric resonant structures," in Proceedings of Integrated Photonics Research (Washington, DC, June 17, 2003).
  20. A. D. Berk, "Variational principles for electromagnetic resonators and waveguides," IRE Trans. Antennas Propag., April 1956, pp. 104-111.
  21. H. A. Haus, W. P. Huang and A. W. Snyder, "Coupled-mode formulations," Opt. Lett. 14, 1222-1224 (1989). [CrossRef] [PubMed]
  22. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999). [CrossRef]
  23. M. J. Khan, M. Lim, C. Joyner, T. Murphy, H. A. Haus and H. I. Smith, "Integrated Bragg grating structures," in Digest of the LEOS Summer Topical Meeting on WDM Components (Copper Mountain, CO, 2001).
  24. J. Scheuer and A. Yariv, "Two-dimensional optical ring resonators based on radial Bragg resonance," Opt. Lett. 28, 1528-1530 (2003). [CrossRef] [PubMed]
  25. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000). [CrossRef]
  26. S. V. Boriskina, T. M. Benson, P. Sewell and A. I. Nosich, "Effect of a layered environment on the complex natural frequencies of 2D WGM dielectric-ring resonators," J. Lightwave Technol. 20, 1563-1572 (2002). [CrossRef]
  27. B. E. Little, J.-P. Laine and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22, 4-6 (1997). [CrossRef] [PubMed]
  28. M. M. Lee and M. C. Wu, "MEMS-actuated microdisk resonators with variable power coupling ratios," IEEE Photon. Technol. Lett. 17, 1034-1036 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited