OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 3 — Feb. 6, 2006
  • pp: 1243–1252

Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications

A. S. Helmy  »View Author Affiliations


Optics Express, Vol. 14, Issue 3, pp. 1243-1252 (2006)
http://dx.doi.org/10.1364/OE.14.001243


View Full Text Article

Enhanced HTML    Acrobat PDF (159 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel design to achieve phase matching between modes of a vertical distributed Bragg reflector waveguide and those of a conventional total internal reflection waveguide is reported for the first time. The device design and structure lend themselves to monolithic integration with active devices using well developed photonic fabrication technologies. Due to the lack of any modulation of the optical properties in the direction of propagation, the device promises very low insertion loss. This property together with the large overlap integral between the interacting fields dramatically enhances the conversion efficiency. The phase matching bandwidth, tunability and dimensions of these structures make them excellent contenders to harness optical nonlinearities in compact, low insertion loss monolithically integrable devices.

© 2006 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.1480) Optical devices : Bragg reflectors
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

History
Original Manuscript: December 21, 2005
Revised Manuscript: January 30, 2006
Manuscript Accepted: January 31, 2006

Citation
A. S. Helmy, "Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications," Opt. Express 14, 1243-1252 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-3-1243


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. B. Ebert, L. A. Eyres, M. M. Fejer, J. H. Harris, "GaAs/Ge/GaAs sublattice reversal epitaxy and its application to nonlinear optical devices," J. Cryst. Growth 227, 183-192 (1999).
  2. J. B. Khurgin, E. Rosencher, Y. J. Ding, "Analysis of all-semiconductor intracavity optical parametric oscillators," J. Opt. Soc. Am. B 15, 1726-1734 (1998). [CrossRef]
  3. A. Fiore, S. Janz, L. Delobel, P. van der Meer, P. Bravetti, V. Berger, and E. Rosencher, "Second-harmonic generation at λ= 1.6 µm in AlGaAs/Al2O3 waveguides using birefringence phase matching," Appl. Phys. Lett. 72, 2942-2945 (1998). [CrossRef]
  4. A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, and J. S. Aitchison, C. T. A. Brown, K. Moutzouris and M. Ebrahimzadeh, "Quasi phase matching in GaAs-AlAs superlattice waveguides via bandgap tuning using quantum well intermixing," Opt. Lett. 25, 1370-1373 (2000). [CrossRef]
  5. R. Haidar, N. Forget, E. Rosencher, "Optical parametric oscillation in micro-cavities based on isotropic semiconductors: a theoretical study," IEEE J. Quantum Electron. 39, 569-576 (2003). [CrossRef]
  6. D. Faccio, F. Bragheri, M. Cherchi, "Optical Bloch-mode-induced quasi phase matching of quadratic interactions in one-dimensional photonic crystals," J. Opt. Soc. Am. B 21, 296-301 (2004). [CrossRef]
  7. K. L. Vodopyanov, O. Levi, P.S. Kuo, T.J. Pinguet, J.S. Harris, M.M. Fejer, B. Gerard, L. Becouarn, E. Lallier "Optical parametric oscillation in quasi-phase-matched GaAs," Opt. Lett. 29, 1912-1914, (2004). [CrossRef] [PubMed]
  8. A. S. Helmy, BrianR.  West "Phase Matching using Bragg Reflector Waveguides," IEEE LEOS Annual Meeting, Sydney, (2005). [CrossRef]
  9. P. Yeh, A. Yariv, " Bragg reflection waveguides," Opt. Commun. 19, 427-430 (1976). [CrossRef]
  10. P. Yeh, A. Yariv, C Hong "Electromagnetic propagation in periodic stratified media: I. General Theory," J. Appl. Phys.,  67, 423-438 (1977).
  11. S. R. A. Dods, "Bragg reflection waveguides," J. Opt. Soc. Am. A,  6, 1465-1475 (1989). [CrossRef]
  12. E. Simova, I. Golub, "Polarization splitter/combiner in high index contrast reflector waveguides," Opt. Express 11, 3425-3430 (2003). [CrossRef] [PubMed]
  13. A. Mizrahi, L. Schächter, "Bragg reflection waveguides with a matching layer," Opt. Express 12, 3156-3170 (2004). [CrossRef] [PubMed]
  14. C. Wätcher, F. Lederer, L. Leine, U. Trutschel, M. Mann, " Nonlinear Bragg reflection waveguide," J. Appl. Phys. 71, 3688-3692 (1992). [CrossRef]
  15. P. M. Lambkin, K. A. Shore, "Nonlinear semiconductor Bragg reflection waveguide structures," IEEE J. Quantum Eletron. 27, 824-828 (1991). [CrossRef]
  16. T. C. Kleckner, A. S. Helmy, K. Zeaiter, D. C. Hutchings, J. S. Aitchison, "Dispersion and Modulation of the Linear Optical Properties of GaAs/AlAs Superlattices Waveguides using Quantum Well Intermixing," IEEE J. Quantum Eletron. (Accepted).
  17. P. Yeh, Optical Waves in layered media, (Wiley, 1988).
  18. J. Chilwell, I. Hodgkinson, "Thin-film field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," J. Opt. Soc. Am. A 1, 742-753 (1984) [CrossRef]
  19. J. Khurgin, "Improvement of frequency-conversion efficiency in waveguides with rotationally twinned layers," Opt. Lett,  13, 603-605 (1988). [CrossRef] [PubMed]
  20. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, M. Calligaro, "Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides," Appl. Phys. Lett. 84,2974-2976 (2004). [CrossRef]
  21. P. Dong, A. G. Kirk, "Nonlinear frequency conversion in waveguide directional couplers," Phys. Rev. Lett. 93,133901 (2004). [CrossRef] [PubMed]
  22. N. Yokouchi, A. J. Danner, K. D. Choquette, "Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers," IEEE J. Sel. Top. Quantum Electron.,  9, 1439-1447 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited