OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 3 — Feb. 6, 2006
  • pp: 1253–1259

Shape resonance omni-directional terahertz filters with near-unity transmittance

J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, Ch. Lienau, Q-Han Park, and P. C. M. Planken  »View Author Affiliations


Optics Express, Vol. 14, Issue 3, pp. 1253-1259 (2006)
http://dx.doi.org/10.1364/OE.14.001253


View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Terahertz transmission filters have been manufactured by perforating metal films with various geometric shapes using femtosecond laser machining. Two dimensional arrays of square, circular, rectangular, c-shaped, and epsilon-shaped holes all support over 99% transmission at specific frequencies determined by geometric shape, symmetry, polarization, and lattice constant. Our results show that plasmonic structures with different geometric shaped holes are extremely versatile, dependable, easy to control and easy to make terahertz filters.

© 2006 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6690) Optics at surfaces : Surface waves
(300.6270) Spectroscopy : Spectroscopy, far infrared

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 2, 2005
Revised Manuscript: January 16, 2006
Manuscript Accepted: January 18, 2006
Published: February 6, 2006

Citation
J. Lee, M. Seo, D. Park, D. Kim, S. Jeoung, Ch. Lienau, Q-Han Park, and P. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-3-1253


Sort:  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. L. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arryas,” Nature (London) 391, 667 (1998). [CrossRef]
  2. L. Salomon, F. Grillot, A. V. Zayats, and F. Fronel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110 (2001). [CrossRef] [PubMed]
  3. S. A. Maier, G. K. Pieter, A. A. Harry, M. Sheffer, H. Elad, E. K. Bruce, and A. G. R. Ari, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Materials 2, 229 (2003). [CrossRef] [PubMed]
  4. D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Letters 4, 1561 (2004). [CrossRef]
  5. T. Zentgraf, A. Christ, J. Kuhl, and H. Giessen, “Tailoring the ultrafast dephasing of quasiparticles in metallic photonic crystals,” Phys. Rev. Lett. 93, 243901 (2004). [CrossRef]
  6. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  7. J. T. Shen, R. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005). [CrossRef] [PubMed]
  8. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Microwave transmission through a single subwavelength annular aperture in a metal plate,” Phys. Rev. Lett. 94, 193902 (2005). [CrossRef] [PubMed]
  9. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847 (2004). [CrossRef] [PubMed]
  10. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005). [CrossRef] [PubMed]
  11. A. Nahata, and H. Cao, “Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures,” Opt. Express 12, 3664 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3664">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3664</a>. [CrossRef] [PubMed]
  12. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601 (2001). [CrossRef] [PubMed]
  13. F. Yang, and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002). [CrossRef] [PubMed]
  14. D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896 (2004). [CrossRef] [PubMed]
  15. M. Tanaka, F. Miyamaru, M. Hangyo, T. Tanaka, M. Akazawa, and E. Sano, “Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays,” Opt. Lett. 30, 1210 (2005). [CrossRef] [PubMed]
  16. J. A. Porto, F. J. Garicia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845 (1999). [CrossRef]
  17. S. Astilean, R. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265 (2000). [CrossRef]
  18. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B 66, 195105 (2002). [CrossRef]
  19. F. J. Garcia-Vidal, and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002). [CrossRef]
  20. F. J. Garcia de Abajo, G. Gomez-Santos, L. A. Blanco, A. G. Borisov, and S. V. Shabanov, “Tunneling mechanism of light transmission through metallic films,” Phys. Rev. Lett. 95, 067403 (2005). [CrossRef] [PubMed]
  21. L. M. Moreno and F. J. García-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619-3628 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3619">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3619</a>. [CrossRef] [PubMed]
  22. F. J. Garcia de Abajo, R. Gomez-Medina, and J. J. Saenz, “Full transmission through perfect conductor subwavelength hole arrays,” Phys. Rev. E 72, 016608 (2005). [CrossRef]
  23. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114 (2001). [CrossRef] [PubMed]
  24. A. Degiron, and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A: Pure Appl. Opt. 7, S90 (2005). [CrossRef]
  25. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004). [CrossRef] [PubMed]
  26. R. Gordon, and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933-1938 (2005), <a href="http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-1933">http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-6-1933</a>. [CrossRef] [PubMed]
  27. H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72, 085436 (2005). [CrossRef]
  28. W. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, “Resonant transmission of microwaves through subwavelength fractal slits in a metallic plate,” Phys. Rev. B 72, 153406 (2005). [CrossRef]
  29. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005). [CrossRef]
  30. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92, 037401 (2004). [CrossRef] [PubMed]
  31. H. Lochbihler, and R. Depine, “Highly conducting wire gratings in the resonance region,” Appl. Opt. 32, 3459 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited