OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 3 — Feb. 6, 2006
  • pp: 1280–1285

Fabrication of complex structures of Holey Fibers in Chalcogenide glass

Laurent Brilland, Fréderic Smektala, Gilles Renversez, Thierry Chartier, Johan Troles, Thanh Nguyen, Nicholas Traynor, and Achille Monteville  »View Author Affiliations


Optics Express, Vol. 14, Issue 3, pp. 1280-1285 (2006)
http://dx.doi.org/10.1364/OE.14.001280


View Full Text Article

Acrobat PDF (192 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report recent progress on fabrication of solid core microstructured fibers in chalcogenide glass. Several complex and regular holey fibers from Ga5Ge20Sb10S65 chalcogenide glass have been realized. We demonstrate that the “Stack & Draw” procedure is a powerful tool against crystallisation when used with a very stable chalcogenide glass. For a 3 ring multimode Holey Fiber, we measure the mode field diameter of the fundamental mode and compare it successfully with calculations using the multipole method. We also investigate, via numerical simulations, the behaviour of fundamental mode guiding losses of microstructured fibers as a function of the matrix refractive index, and quantify the advantage obtained by using a high refractive index glass such as chalcogenide instead of low index glass.

© 2006 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(160.2750) Materials : Glass and other amorphous materials

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: December 1, 2005
Revised Manuscript: January 20, 2006
Manuscript Accepted: January 20, 2006
Published: February 6, 2006

Citation
Laurent Brilland, Fréderic Smektala, Gilles Renversez, Thierry Chartier, Johan Troles, Thanh Nguyen, Nicholas Traynor, and Achille Monteville, "Fabrication of complex structures of Holey Fibers in Chalcogenide glass," Opt. Express 14, 1280-1285 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-3-1280


Sort:  Journal  |  Reset

References

  1. F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232-237 (2000). [CrossRef]
  2. J. Troles, F. Smektala, G. Boudebs, A. Monteil, B. Bureau, and J. Lucas, “Chalcogenide glasses as solid state optical limiters at 1.064µm,” Opt. Mater. 25, 231-237 (2004). [CrossRef]
  3. R. E. Slusher, Gadi Lenz, Juan Hodelin, Jasbinder Sanghera, L. Brandon Shaw and Ishwar D. Aggarwal, “Large Raman gain and nonlinear phase shifts in high purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21, 1146-1155 (2004).
  4. K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. L. Adam, K. Staubmann and T. Bauman, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators B 101, 252-259 (2004). [CrossRef]
  5. M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Yu. N. Pyrkov, and B. I. Glagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326 & 327, 301-305 (2003).
  6. J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt. 28, 5122 (1989).
  7. T. A. Birks, P. J. Roberts, P. St. J. Russel, D. M. Atkin, and T. J. Sheperd, “Full 2D photonic bandgap in silica/air structures,” Electron. Lett. 31, 1941-1943 (1995). [CrossRef]
  8. T. M. Monro, and D. J. Richardson, “Holey optical fibres: Fundamental properties and device applications,” Contemp. R. Phys. 4, 175-186 (2003).
  9. G. Renversez, B. Kuhlmey and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28, 989-991 (2003).
  10. T. A. Birks, J. C. Knight, P. St. J. Russel, “Endlessly single mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
  11. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide Holey Fibres,” Electron. Lett. 36, 1998-2000 (2000). [CrossRef]
  12. L. B. Shaw, P. A. Thielen, F. H. Kunk, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, “IR supercontinuum generation in As-Se Photonic Crystal Fiber,” in Advanced Solid State Photonics., Vol. 98 of OSA Proceedings Series (Optical Society of America, Washington, DC., 2005), pp. 864-868.
  13. Y. Guimond, J. L. Adam, A. M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, ”Optical properties of antimony-stabilised sulphide glasses doped with Dy and Er ions,” J. Non-Cryst. Solids, 256 & 257, 378-382 (1999).
  14. G. Renversez, F. Bordas and B. T. Kuhlmey, "Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrice refractive index and effects of cladding size," Opt. Lett. 30, 1264-1266 (2005).
  15. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I Formulation,” J. Opt. Soc. Am. B 19, 2322- 2330 (2002).
  16. B. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers II: Implementation and results,” J. Opt. Soc. Am. B 10, 2331-2340 (2002).
  17. F. Bordas, L. Provino, and G. Renversez, “Fibres optiques microstructurées de haut indice : pertes et dispersion chromatique du fondamental et cutoff du second mode, comparaison avec la silice," Journées Nationales Optique Guidée, Société Française d'Optique, Paris, France, 230-232 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited