OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 3 — Feb. 6, 2006
  • pp: 1296–1303

Narrow-band single-photon emission in the near infrared for quantum key distribution

E Wu, Vincent Jacques, Heping Zeng, Philippe Grangier, François Treussart, and Jean-François Roch  »View Author Affiliations

Optics Express, Vol. 14, Issue 3, pp. 1296-1303 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a detailed study of photophysical properties of single color centers in natural diamond samples emitting in the near infrared under optical excitation. Photoluminescence of these single emitters has several striking features, including narrow-band (FWHM 2 nm) fully polarized emission around 780 nm, a short excited-state lifetime of about 2 ns, and perfect photostability at room temperature under our excitation conditions. Development of a triggered single-photon source relying on this single color center is discussed for application to quantum key distribution.

© 2006 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(170.1790) Medical optics and biotechnology : Confocal microscopy
(270.5290) Quantum optics : Photon statistics

ToC Category:
Quantum Optics

Original Manuscript: November 15, 2005
Revised Manuscript: January 20, 2006
Manuscript Accepted: January 23, 2006
Published: February 6, 2006

E Wu, Vincent Jacques, Heping Zeng, Philippe Grangier, François Treussart, and Jean-François Roch, "Narrow-band single-photon emission in the near infrared for quantum key distribution," Opt. Express 14, 1296-1303 (2006)

Sort:  Journal  |  Reset  


  1. P. Grangier, B. Sanders, and J. Vučković editors, “Focus on Single Photons on Demand,” New J. Phys. 6 (2004). [CrossRef]
  2. C.H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” Proceedings of the IEEE International Conference on Computers, Systems & Signal Processing (Bangalore, India), 175-179 (1984).
  3. N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  4. C. Gerry and P. Knight, Introductory quantum optics (Cambridge University Press, Cambridge, 2005).
  5. N. Lütkenhaus, “Estimates for practical quantum cryptography,” Phys. Rev. A 59, 3301-3320 (1999). [CrossRef]
  6. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002). [CrossRef] [PubMed]
  7. R. Alléaume, F. Treussart, G. Messin, Y. Dumeige, J.-F. Roch, A. Beveratos, R. Brouri-Tualle, J.-P. Poizat, and P. Grangier, “Experimental open-air quantum key distribution with a single-photon source,” New J. Phys. 6, 92 (2004). [CrossRef]
  8. W.-Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 057901 (2003). [CrossRef] [PubMed]
  9. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504, 2005. [CrossRef] [PubMed]
  10. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173-179 (1986). [CrossRef]
  11. C.K. Hong and L. Mandel, “Experimental realization of a localized one-photon state,” Phys. Rev. Lett. 56, 58-60 (1986). [CrossRef] [PubMed]
  12. S. Fasel, O. Alibart, S. Tanzilli, P. Baldi, A. Beveratos, N. Gisin, and H. Zbinden, “High-quality asynchronous heralded single-photon source at telecom wavelength,” New J. Phys. 6, (2004). [CrossRef]
  13. O. Alibart, D.B. Ostrowsky, P. Baldi, and S. Tanzilli, “High performance guided-wave asynchroneous heralded single-photon source,” Opt. Lett. 30, 1539-1541 (2005). [CrossRef] [PubMed]
  14. R. Alléaume, J.-F. Roch, D. Subacius, A. Zavriyev, and A. Trifonov, “Fiber-optics quantum cryptography with single photons,” AIP Conference Proceedings 734, 287-290 (2004). [CrossRef]
  15. R. Brouri, A. Beveratos, J.-Ph. Poizat, and P. Grangier, “Single-photon generation by pulsed excitation of a single dipole,” Phys. Rev. A 62, 063817-063823 (2000). [CrossRef]
  16. F. De Martini, G. Di Giuseppe, and M. Marrocco, “Single-mode generation of quantum photon states by excited single molecules in a microcavity trap,” Phys. Rev. Lett. 76, 900-903 (1996). [CrossRef] [PubMed]
  17. A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Room temperature stable single photon source,” Eur. Phys. J. D 18, 191 (2002). [CrossRef]
  18. A. M. Zaitsev, Optical properties of diamond, a data handbook (Springer, Berlin , 2000).
  19. T. Gaebel, I. Popa, A. Gruber,M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” New J. Phys. 6, 98 (2004). [CrossRef]
  20. J. Rabeau, Y. Chin, S. Prawer, F. Jelezko, T. Gaebel, and J. Wrachtrup, “Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition,” Appl. Phys. Lett. 86, 131926 (2005). [CrossRef]
  21. V. Nadolinny, A. Yelisseyev, J. Baker, M. Newton, D. Twitchen, S. Lawson, O. Yuryeva, and B. Feigelson, “A study of 13C hyperfine structure in the EPR of nickel-nitrogen-containing centres in diamond and correlation with optical properties,” J. Phys. Condens. Matter. 11, 7357-7376 (1999). [CrossRef]
  22. Their are four covalent bonds between nitrogen atoms and the nickel defect, but the electrons shared in each bond come from one atom species only, which is the specificity of coordination-type bond.
  23. R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual colored centers in diamond,” Opt. Lett. 25, 1294-1296 (2000). [CrossRef]
  24. J. Isberg, J. Hammersberg, E. Johansson, T. Wikström, D. Twitchen, A. Whitehead, S. Coe, and G. Scarsbrook, “High carrier mobility in single-crystal plasma-deposited diamond,” Science 297, 1670-1672 (2002). [CrossRef] [PubMed]
  25. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystal,” Phys. Rev. A 64, 061802 (2001). [CrossRef]
  26. S. Reynaud, “La fluorescence de résonance: étude par la méthode de l’atome habillé,” Ann. Phys. Fr. 8, 315-370 (1983).
  27. A. Yelisseyev, S. Lawson, I. Sildos, A. Osvet, V. Nadolinny, B. Feigelson, J.M. Baker, M. Newton, and O. Yuryeva, “Effect of HPHT annealing on the photoluminescence of synthetic diamonds grown in the Fe–Ni–C system,” Diamond Relat. Mater. 12, 2147-2168 (2003). [CrossRef]
  28. S. Kitson, P. Jonsson, J. Rarity, and P. Tapster, “Intensity fluctuation spectroscopy of small number of dye molecules in a microcavity,” Phys. Rev. A 58, 620-627 (1998). [CrossRef]
  29. F. Treussart, A. Clouqueur, C. Grossman, and J.-F. Roch, “Photon antibunching in the fluorescence of a single dye molecule embedded in a thin polymer film,” Opt. Lett. 26, 1504-1506 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited