OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 3 — Feb. 6, 2006
  • pp: 1304–1313

Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 μm

P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale  »View Author Affiliations

Optics Express, Vol. 14, Issue 3, pp. 1304-1313 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (629 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-sensitivity spectroscopy of methane around 3 μm was carried out by means of a 5.5-mW cw difference-frequency generator in conjunction with a high finesse cavity in off-axis alignment. By cavity-output integration a minimum detectable absorption coefficient of 5.7∙10-9 cm-1Hz-1/2 was achieved, which compares well with results already reported in the literature. Detection of methane in natural abundance was also performed in ambient air, for different values of total pressure, allowing direct concentration measurements via evaluation of the integrated absorbance of the spectra. In particular, at atmospheric pressure, a minimum detectable concentration of 850 parts per trillion by volume (pptv)∙Hz-1/2 was demonstrated.

© 2006 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.5750) Optical devices : Resonators
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:

Original Manuscript: October 24, 2005
Revised Manuscript: January 16, 2006
Manuscript Accepted: January 19, 2006
Published: February 6, 2006

P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, "Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 µm," Opt. Express 14, 1304-1313 (2006)

Sort:  Journal  |  Reset  


  1. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 µm,” Appl. Phys. B 67, 283-288 (1998). [CrossRef]
  2. E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T .L. Thompson, R. J. Mclaughlin, A. L. Schmeltekopf, and A. F. Tuck, “A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4 in the upper troposphere and lower stratosphere,” Appl. Phys. B 75, 183-194 (2002). [CrossRef]
  3. G. Gagliardi, R. Restieri, G. De Biasio, P. De Natale, F. Cotrufo, and L. Gianfrani, “Quantitative diode laser absorption spectroscopy near 2 µm with high precision measurements of CO2 concentration,” Rev. Sci. Instrum. 72, 4228-4233 (2001). [CrossRef]
  4. H. Dahnke, D. Kleine, W. Urban, P. Hering, and M. Mürtz, “Isotopic ratio measurement of methane in ambient air using mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 72, 121-125 (2001). [CrossRef]
  5. L. Menzel, A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A.Y. Cho, and W. Urban, “Spectroscopic detection of biological NO with a quantum cascade laser,” Appl. Phys. B 72, 1-5 (2001). [CrossRef]
  6. H. Dahnke, D. Kleine, P. Hering, and M. Mürtz, “Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy,” Appl. Phys. B 72, 971-975 (2001). [CrossRef]
  7. G. J. German, and D. J. Rokestraw, “Multiplex spectroscopy: determining the transition moments and absolute concentrations of molecular species,” Science 264, 1750-1753 (1994). [CrossRef]
  8. C. R. Webster, “Measuring methane and its isotopes 12CH4, 13CH4 and CH3D on the surface of Mars with in situ laser spectroscopy,” Appl. Opt. 44, 1226-1234 (2005). [CrossRef] [PubMed]
  9. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stockel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316-322 (1997). [CrossRef]
  10. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: Experimental schemes and applications,” Int. Rev. Phys. Chem 19, 565-607 (2000). [CrossRef]
  11. S. Stry, P. Hering, and M. Mürtz, “Portable difference-frequency laser-based cavity leak-out spectrometer for trace-gas analysis,” Appl. Phys. B 75, 297-303 (2002). [CrossRef]
  12. G. von Basum, D. Halmer, P. Hering, M Mürtz, S. Schiller, F. Müller, A. Popp, and F. Kühnemann, “Parts per trillion sensitivity for ethane in air with an optical parametric oscillator cavity leak-out spectrometer,” Opt. Lett. 29, 797-799 (2004). [CrossRef] [PubMed]
  13. J. T. Hodges, and R. Ciurylo, “Automated high-resolution frequency-stabilized cavity ring-down absorption spectrometer,” Rev. Sci. Instrum. 76, 023112 (2005). [CrossRef]
  14. D. Halmer, G. von Basum, P. Hering, and M. Mürtz, “Mid-infrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulfide,” Opt. Lett. 30, 2314-2316 (2005). [CrossRef] [PubMed]
  15. K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369-372 (1994). [CrossRef]
  16. J. Ye, Long-Sheng Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am B 15, 6-15 (1998). [CrossRef]
  17. R. Peeters, G. Berden, A. Apituley, and G. Meijer, “Open-path trace gas detection of ammonia based on cavity-enhanced absorption spectroscopy,” Appl. Phys. B 71, 231-236 (2000). [CrossRef]
  18. G. Gagliardi, and L. Gianfrani, “Trace-gas anlysis using diode lasers in the near-IR and long-path techniques,” Opt. Lasers. Eng. 37, 509-520 (2002). [CrossRef]
  19. J. B. Paul, L. Lapson, and J. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904-4910 (2001). [CrossRef]
  20. D. S. Baer, J. B. Paul, M. Gupta, and A. O’Keefe, “Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy,” Appl. Phys. B 75, 261-265 (2002). [CrossRef]
  21. B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, G. A. D. Ritchie, “Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser,” Appl. Phys. B 75, 745-750 (2002). [CrossRef]
  22. V. L. Kasyutich, C. E. Canosa-Mas, C. Pfrang, S. Vaughan, and R. P. Wayne, “Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers,” Appl. Phys. B 75, 755-761 (2002). [CrossRef]
  23. S. Williams, M. Gupta, T. Owano, D. S. Baer, and A O’Keefe, D. R. Yarkony, and S. Matsika, “Quantitative detection of O2 by cavity-enhanced spectroscopy,” Opt. Lett. 29, 1066-1068 (2004). [CrossRef] [PubMed]
  24. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl and F. K. Tittel, “Mid-infrared quantum cascade laser based off-axis integrated output spectroscopy of biogenic nitric oxide detection,” Appl. Opt. 43, 2257-2266 (2004). [CrossRef] [PubMed]
  25. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705-710 (2005). [CrossRef]
  26. M. Ebrahimzadeh: in Solid-State Mid-Infrared Laser Sources, Topics in Appl. Phys. 89, I. T. Sorokina, and K. L. Vodopyanov, eds. (Spriger-Verlag, Berlin 2003) p. 179.
  27. F. K. Tittel, D. Richter, and A Fried: in Solid-State Mid-Infrared Laser Sources, Topics in Appl. Phys. 89, I. T. Sorokina and K. L. Vodopyanov, eds. (Spriger-Verlag, Berlin 2003) p. 445.
  28. E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett. 26, 1430-1433 (2001). [CrossRef]
  29. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281-288 (2003). [CrossRef] [PubMed]
  30. S. Borri, P. Cancio, P. De Natale, G. Giusfredi, D. Mazzotti, and F. Tamassia, “Power-boosted difference-frequency source for high-resolution infrared spectroscopy,” Appl. Phys. B 76, 473-477 (2003). [CrossRef]
  31. P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5-mW continuous-wave difference-frequency source around 3 µm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141-145 (2005). [CrossRef]
  32. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523-526 (1964). [CrossRef]
  33. J. Morville, D. Romanini, M. Chenevier, and A. Kachanov, “Effects of laser phase noise on the injection of a high-finesse cavity,” Appl. Opt. 41, 6980-6990 (2002). [CrossRef] [PubMed]
  34. B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, and G. A. D. Ritchie, “Cavity-enhanced absorption spectroscopy with a rapidly swept diode laser,” Appl. Phys. B 75, 745-750 (2002). [CrossRef]
  35. Harvard Smithsonian Center for Astrophysics: The Hitran Database 2004 <a href="http://www.hitran.com">http://www.hitran.com</a>
  36. A. Rocco, G. De Natale, P. De Natale, G. Gagliardi, and L. Gianfrani, “A diode-laser-based spectrometer for in-situ measurements of volcanic gases,” Appl. Phys. B 78, 235-240 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited