OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 3 — Feb. 6, 2006
  • pp: 1329–1338

Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses

J. R. Vázquez de Aldana, C. Méndez, and L. Roso  »View Author Affiliations


Optics Express, Vol. 14, Issue 3, pp. 1329-1338 (2006)
http://dx.doi.org/10.1364/OE.14.001329


View Full Text Article

Enhanced HTML    Acrobat PDF (272 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the effect of saturation in the propagation of ablation channels performed in fused silica with many incident femtosecond pulses and laser fluence slightly above the ultrafast ablation threshold. A 110 fs Ti:Sapphire laser system is used in the experiments and the results are compared with theoretical predictions performed with a numerical model developed by the authors. Diffraction of the incoming pulses at the entrance of the channel as well as reflections at the walls of the channel play a crucial role in the progress of the crater as it is shown by means of the numerical results. The effect of the pulse duration in the shape of the ablation channel is also investigated.

© 2006 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.2750) Materials : Glass and other amorphous materials
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

History
Original Manuscript: December 6, 2005
Revised Manuscript: January 20, 2006
Manuscript Accepted: January 20, 2006
Published: February 6, 2006

Citation
J. R. Vázquez de Aldana, C. Méndez, and L. Roso, "Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses," Opt. Express 14, 1329-1338 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-3-1329


Sort:  Journal  |  Reset  

References

  1. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995). [CrossRef] [PubMed]
  2. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Morou,W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett. 80, 4076–4079 (1998). [CrossRef]
  3. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas 9, 949–957 (2002). [CrossRef]
  4. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999). [CrossRef]
  5. L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001). [CrossRef]
  6. A. Zoubir, L. Sha, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys. 77, 311–315 (2003).
  7. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605–612 (2004). [CrossRef]
  8. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004). [CrossRef] [PubMed]
  9. C. Méndez, J. R. Vázquez de Aldana, G. A. Torchia, and L. Roso, “Integrated-grating-induced control of second-harmonic beams in frequency-doubling crystals,” Opt. Lett. 30, 2763–2765 (2005). [CrossRef] [PubMed]
  10. The experimental method for measuring the ablation threshold can be found in: G. Dimitru, V. Romano, H. P. Weber, M. Sentis, and W. Marine, “Femtosecond ablation of ultrahard materials,” Appl. Phys. A 74, 729–739 (2002). [CrossRef]
  11. M. D. Feit, A. M. Komashko, and A. M. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys. A 79, 1657–1661 (2004). [CrossRef]
  12. L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D: Appl. Phys. 37, 1492–1496 (2004). [CrossRef]
  13. L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulses,” Appl. Phys. Lett. 87, 151104 (2005). [CrossRef]
  14. J. R. Vázquez de Aldana, C. Méndez, L. Roso, and P. Moreno, “Propagation of ablation channels with multiple femtosecond laser pulses in dielectrics: numerical simulations and experiments,” J. Phys. D: Appl. Phys. 38, 2764–2768 (2005). [CrossRef]
  15. I. H. Chowdhury, A. Q. Wu, X. Xu, and A. M. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A 81, 1627–1632 (2005). [CrossRef]
  16. M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5 fs pulses,” Appl. Phys. A 69, 465–466 (1999). [CrossRef]
  17. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999). [CrossRef]
  18. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: GIF (99 KB)     
» Media 2: GIF (119 KB)     
» Media 3: GIF (566 KB)     
» Media 4: GIF (556 KB)     
» Media 5: GIF (603 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited