OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 4 — Feb. 20, 2006
  • pp: 1353–1367

Propagation of various dark hollow beams in a turbulent atmosphere

Yangjian Cai and Sailing He  »View Author Affiliations

Optics Express, Vol. 14, Issue 4, pp. 1353-1367 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2379 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry in a turbulent atmosphere is investigated. Analytical formulas for the average intensity of various DHBs propagating in a turbulent atmosphere are derived in a tensor form based on the extended Huygens-Fresnel integral. The intensity and spreading properties of the DHBs in a turbulent atmosphere are studied numerically. It is found that after a long propagation distance a dark hollow beam of circular or non-circular eventually becomes a circular Gaussian beam (without dark hollow) in a turbulent atmosphere, which is much different from its propagation properties in free space. The conversion from a DHB to a circular Gaussian beam becomes quicker and the beam spot in the far field spreads more rapidly for a larger structure constant, a shorter wavelength, a lower beam order and a smaller waist size of the initial beam.

© 2006 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.3310) Atmospheric and oceanic optics : Laser beam transmission

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: December 22, 2005
Revised Manuscript: January 22, 2006
Manuscript Accepted: February 5, 2006
Published: February 20, 2006

Yangjian Cai and Sailing He, "Propagation of various dark hollow beams in a turbulent atmosphere," Opt. Express 14, 1353-1367 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Yin, W. Gao, and Y. Zhu, ‘‘Generation of dark hollow beams and their applications,’’ in Progress in Optics, E. Wolf, ed., (North-Holland, Amsterdam, 2003), Vol. 44, pp. 119-204. [CrossRef]
  2. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, ‘‘Novel optical trap of atoms with a doughnut beam,’’Phys. Rev. Lett. 78, 4713-4716 (1997). [CrossRef]
  3. J. Arlt and K. Dholakia, ‘‘Generation of high-order Bessel beams by use of an axicon,’’Opt. Commun. 177, 297-301 (2000). [CrossRef]
  4. Y. Cai, X. Lu, and Q. Lin, ‘‘Hollow Gaussian beam and its propagation,’’ Opt. Lett. 28, 1084-1086 (2003). [CrossRef] [PubMed]
  5. Y. Cai and Q. Lin, "Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems," J. Opt. Soc. Am. A 21, 1058-1065 (2004). [CrossRef]
  6. D. Ganic, X. Gan, M. Gu, "Focusing of doughnut laser beams by a high numerical-aperture objective in free space," Opt. Express 11, 2747-2752 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2747 [CrossRef] [PubMed]
  7. K. Zhu, H. Tang, X. Sun, X. Wang, and T. Liu, ‘‘Flattened multi-Gaussian light beams with an axial shadow generated through superposing Gaussian beams, ’’Opt. Commun. 207, 29-34 (2002). [CrossRef]
  8. Z. Mei and D. Zhao, "Controllable dark-hollow beams and their propagation characteristics," J. Opt. Soc. Am. A 22, 1898-1902 (2005). [CrossRef]
  9. D. Deng, X. Fu, C. Wei, J. Shao and Z. Fan, "Far-field intensity distribution and M2 factor of hollow Gaussian beams,"Appl. Opt. 44, 7187-7190 (2005). [CrossRef] [PubMed]
  10. C. C. Davis, I. I. Smolyaninov, and S. D. Milner, "Flexible optical wireless link and networks," IEEE Commun. Mag. 41, 51-57 (2003). [CrossRef]
  11. H. Izadpanah, T. Elbatt, V. Kukshya, F. Dolezal, and B. K. Ryu, "High-availability free space optical and RF hybrid wireless networks," IEEE Wireless Commun. 10, 45-55 (2003). [CrossRef]
  12. Z. I. Feizulin and Y. A. Kravtsov, "Broadening of a laser beam in a turbulent medium," Radiophys. Quantum Electron. 10, 33-35 (1967). [CrossRef]
  13. C. Y. Young, Y. V. Gilchrest, and B. R. Macon, "Turbulence-induced beam spreading of higher-order mode optical waves," Opt. Eng. 41, 1097-1103 (2002). [CrossRef]
  14. S. C. H. Wang and M. A. Plonus, "Optical beam propagation for a partially coherent source in the turbulent atmosphere," J. Opt. Soc. Am. 69, 1297-1304 (1979). [CrossRef]
  15. J. C. Leader, "Atmospheric propagation of partially coherent radiation", J. Opt. Soc. Am. 68, 175-185 (1978). [CrossRef]
  16. T. Shirai, A. Dogariu, and E. Wolf, "Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence," J. Opt. Soc. Am. A 20, 1094-1102 (2003). [CrossRef]
  17. H. T. Eyyuboðlu and Y. Baykal, "Reciprocity of cos-Gaussian and cosh-Gaussian laser beams in turbulent atmosphere," Opt. Express 12, 4659-4674 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4659 [CrossRef] [PubMed]
  18. H. T. Eyyuboðlu and Y. Baykal, "Average intensity and spreading of cosh-Gaussian beams in the turbulent atmosphere," Appl. Opt. 44, 976-983 (2005). [CrossRef] [PubMed]
  19. Y. Baykal, "Correlation and structure functions of Hermite-sinusoidal-Gaussian laser beams in a turbulent atmosphere," J. Opt. Soc. Am. A 21, 1290-1299 (2004). [CrossRef]
  20. H. T. Eyyuboðlu, "Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere," J. Opt. Soc. Am. A 22, 1527-1535 (2005). [CrossRef]
  21. H. T. Eyyuboðlu, "Propagation of Hermite-cosh-Gaussian laser beams in turbulent atmosphere," Opt. Commun. 245, 37-47 (2005). [CrossRef]
  22. Y. Baykal, "Log-amplitude and phase fluctuations of higher-order annular laser beams in a turbulent medium," J. Opt. Soc. Am. A 22, 672-679 (2005). [CrossRef]
  23. J. A. Arnaud, "Nonorthogonal optical waveguides and resonators," Bell Syst. Tech. J. 49, 2311-2348 (1970).
  24. J. A. Arnaud, Hamiltonian theory of beam mode propagation, in Progress in Optics, Vol XI, E. Wolf, ed., (North-Holland, Amsterdam, 1973), pp. 247-304. [CrossRef]
  25. Q. Lin, S. Wang, J. Alda, and E. Bernabeu, "Transformation of non-symmetric Gaussian beam into symmetric one by means of tensor ABCD law," Optik 85, 67-72 (1990).
  26. J. Alda, S. Wang, and E. Bernabeu, "Analytical expression for the complex radius of curvature tensor Q for generalized Gaussian beams," Opt. Commun. 80, 350-352 (1991). [CrossRef]
  27. Q. Lin and Y. Cai, "Tensor ABCD law for partially coherent twisted anisotropic Gaussian Schell-model beams," Opt. Lett. 27, 216-218 (2002). [CrossRef]
  28. W. H. Carter, ‘‘Spot size and divergence for Hermite-Gaussian beams of any order,’’ Appl. Opt. 19, 1027-1029 (1980). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited