OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 4 — Feb. 20, 2006
  • pp: 1451–1457

All-optical spatial filtering with power limiting materials

Chandra S. Yelleswarapu, Pengfei Wu, Sri-Rajasekhar Kothapalli, D. V. G. L. N. Rao, Brian R. Kimball, S. Siva Sankara Sai, R. Gowrishankar, and S. Sivaramakrishnan  »View Author Affiliations

Optics Express, Vol. 14, Issue 4, pp. 1451-1457 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (571 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated that a power limiting mechanism could potentially be used for self-adaptive, all-optical Fourier image processing. Reverse saturable absorbers like porphyrins are chosen due to their fluence dependent power limiting property, which triggers at relatively low intensities. At low input intensities, below the power-limiting threshold, the 4-f configuration will image the object onto the CCD camera without any spatial frequency filtering. As the input intensity is increased above the threshold level, dc and low spatial frequencies are blocked resulting in edge-enhanced images containing high spatial frequencies. The incident intensity sets the higher limit on the band of frequencies blocked. In addition, the use of the same experimental setup for both power limiting experiments and optical image processing demonstrates that in the case of any bright image bearing laser beam, the sensitive detectors are protected, by blocking the intense low spatial frequencies.

© 2006 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(100.1160) Image processing : Analog optical image processing
(140.3330) Lasers and laser optics : Laser damage
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Fourier Optics and Optical Signal Processing

Original Manuscript: July 14, 2005
Revised Manuscript: January 30, 2006
Manuscript Accepted: February 1, 2006
Published: February 20, 2006

Virtual Issues
Vol. 1, Iss. 3 Virtual Journal for Biomedical Optics

Chandra Yelleswarapu, Pengfei Wu, Sri-Rajasekhar Kothapalli, D. V. G. L. N. Rao, Brian Kimball, S. Siva Sankara Sai, R. Gowrishankar, and S. Sivaramakrishnan, "All-optical spatial filtering with power limiting materials," Opt. Express 14, 1451-1457 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Yongqiang Shi, Cheng Zhang, Hua Zhang, James H. Bechtel, Larry R. Dalton, Bruce H. Robinson, and William H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape," Science 288, 119 (2000). [CrossRef]
  2. PeterK. H. Ho, D. Stephen Thomas, Richard H. Friend, and Nir Tessler, "All-polymer optoelectronic devices," Science 285, 233 (1999). [CrossRef] [PubMed]
  3. Xiaoyong Hu, Yuanhao Liu, Jie Tian, Bingying Cheng, and Daozhong Zhang, "Ultrafast all-optical switching in two-dimensional organic photonic crystals," Appl. Phys. Lett. 86, 121102 (2005). [CrossRef]
  4. K. Sendhil, C. Vijayan, and M. P. Kothiyal, "Spatial phase filtering with a porphyrin derivative as phase filter in an optical image processor," Opt. Commun. 251, 292 (2005). [CrossRef]
  5. G. Boudebs and S. Cherukulappurath, "Nonlinear optical measurements using a 4f coherent imaging system with phase objects,"Phys. Rev. A 69, 053813 (2004). [CrossRef]
  6. D. V. G.L. N. Rao, F. J. Aranda, D. E. Remy, and J. F. Roach, "Third-order nonlinear optical interactions in Tetrabenzporphyrins," Int. J. Nonlinear Opt. Phys. 3, 511 (1994). [CrossRef]
  7. N. Phu Xuan, J. L. Ferrier, J. Gazengel, G. Rivoire, G. L. Breki-Iovskhikh, A. D. Kudriavtseva, A. I. Sokolovskaia, and N. V. Tcherniega, "Changes in the space structures of light beams induced by nonlinear optical phenomena: Application to phase contrast and image processing," Opt. Commun. 68, 244 (1988). [CrossRef]
  8. P. S. Ramanujam and RolfH. Berg, "Photodimerization in dipeptides for high capacity optical digital storage,"Appl. Phys. Lett. 85, 1665 (2004). [CrossRef]
  9. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, and B. S. DeCristofano, "Enhancement of photoinduced anisotropy and all-optical switching in Bacteriorhodopsin films," Appl. Phys. Lett. 81, 3888 (2002). [CrossRef]
  10. J. E. Wray, K. C. Liu, C. H. Chen, W. R. Garrett, M. G. Payne, R. Goedert, and D. Templeton, "Optical power limiting of fullerenes," Appl. Phys. Lett. 64, 2785 (1994). [CrossRef]
  11. M. P. Joshi, J. Swiatkiewicz, Faming Xu, Paras N. Prasad, B. A. Reinhardt, Ram Kannan, "Energy transfer couplingof two-photon absorption and reverse saturable absorption for enhanced optical power limiting," Opt. Lett. 23, 1742 (1998). [CrossRef]
  12. H. S. Nalwa and S. Miyata, Nonlinear optics of organic molecules and polymers, (CRC Press 1997).
  13. L. W. Tutt and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials," Prog. Quantum Electron. 17, 299 (1993). [CrossRef]
  14. W. Sun, C. C. Byeon, M. M. McKerns, C. M. Lawson, G. M. Gray, and D. Wang, "Optical limiting performances of asymmetric pentaazadentate porphyrin-like cadmium complexes," Appl. Phys. Letts. 73, 1167 (1998). [CrossRef]
  15. Jian-Guo Tian, Chunping Zhang, Guangyin Zhang, and Jiangwei Li, "Position dispersion and optical limiting resulting from induced nonlinearities in Chinese tea liquids," Appl. Opt. 32, 6628 (1993). [CrossRef] [PubMed]
  16. J. W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, CA 1968).
  17. T. Y. Chang, J. H. Hong and P. Yeh, "Spatial amplification: an image-processing technique using the selective amplification of spatial frequencies," Opt. Lett. 15, 743 (1990). [CrossRef] [PubMed]
  18. S. Kothapalli, P. Wu, C. Yelleswarapu and D. V. G. L. N. Rao, "Medical image processing using transient Fourier holography in bacteriorhodopsin films," Appl. Phys. Lett. 85, 5836 (2004). [CrossRef]
  19. A. Panchangam, K. V. L. N. Sastry, D. V. G. L. N. Rao, B. S. DeCristofano, B. R. Kimball, and M. Nakashima, "Processing of medical images using real-time optical fourier processing," Med. Phys. 28, 22 (2001). [CrossRef] [PubMed]
  20. M. D. I. Castillo, D. Sanchex-de-la-Llave, R. R. Garcia, L. I. Olivos-Perez, L. A. Gonzalez, and M. Rodriguez-Ortiz, "Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film," Opt. Eng. 40, 2367 (2001). [CrossRef]
  21. Hong Liu, Jian Xu and Laurie L. Fajardo, "Optical processing architecture for analog and digital radiography," Med. Phys. 26, 648 (1999). [CrossRef] [PubMed]
  22. J. Joseph, F. J. Arnanda, D. V. G. L. N. Rao, J. A. Akkara, and M. Nakashima, "Optical fourier processing using photoinduced dichroism in a bacteriorhodopsin film," Opt. Lett. 21, 1499 (1996). [CrossRef] [PubMed]
  23. R. Thoma, N. Hampp, C. Brauchle, and D. Oesterhelt, "Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering," Opt. Lett. 16, 651 (1991). [CrossRef] [PubMed]
  24. TallisY. Chang, John H. Hong, and Pochi Yeh, "Spatial amplification: an image-processing technique using the selective amplification of spatial frequencies," Opt. Lett. 15, 743 (1990). [CrossRef] [PubMed]
  25. M. Y. Shih, A. Shishido, and I. C. Khoo, "All-optical image processing by means of a photosensitive nonlinear liquid-crystal film: edge enhancement and image addition subtraction," Opt. Lett. 26, 1140 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited