OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 4 — Feb. 20, 2006
  • pp: 1547–1556

In vivo detection of exercise-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography

James J. Pasquesi, Simon C. Schlachter, Marni D. Boppart, Eric Chaney, Stephen J. Kaufman, and Stephen A. Boppart  »View Author Affiliations


Optics Express, Vol. 14, Issue 4, pp. 1547-1556 (2006)
http://dx.doi.org/10.1364/OE.14.001547


View Full Text Article

Enhanced HTML    Acrobat PDF (461 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Skeletal muscle fibers are a known source of form birefringence in biological tissue. The birefringence present in skeletal muscle is associated with the ultrastructure of individual sarcomeres, specifically the arrangement of A-bands corresponding to the thick myosin filaments. Certain structural proteins that prevent damage and maintain the structural and functional health of the muscle fiber preserve the organization of the A-bands in skeletal muscle. Therefore, the level of birefringence detected can estimate the health of the muscle as well as the damage incurred during exercise. Murine skeletal muscle from both genetically-altered (mdx) and normal (wild-type) specimens were imaged in vivo with a fiber-based PS-OCT imaging system to quantitatively determine the level of birefringence present in the tissue before and after exercise. The mdx muscle lacks dystrophin, a structural protein that is mutated in Duchenne muscular dystrophy in humans. Muscle from these mdx mice exhibited a marked decrease in birefringence after exercise, whereas the wild-type muscle was highly birefringent before and after exercise. The quantitative results from this tissue optics study suggest for the first time that there is a distinct relationship between the degree of birefringence detected using PS-OCT and the sarcomeric ultrastructure present within skeletal muscle.

© 2006 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.5380) Medical optics and biotechnology : Physiology
(230.5440) Optical devices : Polarization-selective devices
(260.1440) Physical optics : Birefringence

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 22, 2005
Revised Manuscript: January 31, 2006
Manuscript Accepted: February 2, 2006
Published: February 20, 2006

Virtual Issues
Vol. 1, Iss. 3 Virtual Journal for Biomedical Optics

Citation
James J. Pasquesi, Simon C. Schlachter, Marni D. Boppart, Eric Chaney, Stephen J. Kaufman, and Stephen A. Boppart, "In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography," Opt. Express 14, 1547-1556 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1547


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. P. O'Reilly, M. J. Warhol, R. A. Fielding, W. R. Frontera, C. N. Meredith, and W. J. Evans, "Eccentric exercise-induced muscle damage impairs muscle glycogen repletion," J. Appl. Physiol. 63, 252 (1987). [PubMed]
  2. J. F. Watchko, T. L. O’Day, and E. P. Hoffman, "Functional characteristics of dystrophic skeletal muscle: insights from animal models," J. Appl. Physiol. 93, 407 (2002). [PubMed]
  3. J. Sherman, A. Vander, and D. Luciano, Human Physiology: The Mechanisms of Body Function, 8th ed. (McGraw-Hill Companies Inc., New York, NY 2001).
  4. S. De la Porte, S. Morin, and J. Koenig, "Characteristics of skeletal muscle in mdx mutant mice," Int. Rev. Cytol 191, 99 (1999). [CrossRef] [PubMed]
  5. A. V. Smolensky, J. Ragozzino, S. H. Gilbert, C. Y. Seow, and L. E. Ford, "Length-dependent filament formation assessed from birefringence increases during activation of porcine tracheal muscle," J. Physiol. 563, 517 (2005). [CrossRef]
  6. T. E. Milner and J. F. de Boer, "Review of polarization sensitive optical coherence tomography and Stokes vector determination," J. Biomed. Opt. 7, 359 (2002). [CrossRef]
  7. Y. Chen, L. Otis, D. Piao, and Q. Zhu, "Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system," Appl. Opt. 44, 2041 (2005). [CrossRef] [PubMed]
  8. M. C. Pierce, J. Strasswimmer, B. H. Park, B. Cense, and J. F. de Boer, "Birefringence measurements in human skin using polarization-sensitive optical coherence tomography," J. Biomed. Opt. 9, 287 (2004). [CrossRef] [PubMed]
  9. W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis," J. Rheumatol. 28, 1311 (2001). [CrossRef] [PubMed]
  10. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606 (2004). [PubMed]
  11. S. Guo, J. Zhang, L. Wang, J. S. Nelson, and Z. Chen, "Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography," Opt. Lett. 29, 2025 (2004). [CrossRef] [PubMed]
  12. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components," Opt. Lett. 29, 2512 (2004). [CrossRef] [PubMed]
  13. N. A. Patel, J. Zoeller, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, "Monitoring osteoarthritis in the rat model using optical coherence tomography," IEEE Trans. Med. Imaging 24, 155 (2005). [CrossRef] [PubMed]
  14. S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, "Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation," Appl. Opt. 44, 5463 (2005). [CrossRef] [PubMed]
  15. J. F. de Boer, T. E. Milner, and J. S. Nelson, "Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography," Opt. Lett. 24, 300-302 (1999). [CrossRef] [PubMed]
  16. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Opt. Express 9, 780-790 (2001). [CrossRef]
  17. J. de Boer, T. Milner, M. van Gemert, and J. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997). [CrossRef] [PubMed]
  18. M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging", J. Opt. Soc. Am. B 9, 903-908 (1992). [CrossRef] [PubMed]
  19. N. Kemp, H. Zaatari, J. Park, H. RylanderIII, and T. Milner, "Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT)," Opt. Express 13, 4611-4628 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited