OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 4 — Feb. 20, 2006
  • pp: 1557–1567

Negative effective permeability and left-handed materials at optical frequencies

A. Alù, A. Salandrino, and N. Engheta  »View Author Affiliations

Optics Express, Vol. 14, Issue 4, pp. 1557-1567 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (794 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present here the design of nano-inclusions made of properly arranged collections of plasmonic metallic nano-particles that may exhibit a resonant magnetic dipole collective response in the visible domain. When such inclusions are embedded in a host medium, they may provide metamaterials with negative effective permeability at optical frequencies. We also show how the same inclusions may provide resonant electric dipole response and, when combining the two effects at the same frequencies, left-handed materials with both negative effective permittivity and permeability may be synthesized in the optical domain with potential applications for imaging and nano-optics applications.

© 2006 Optical Society of America

OCIS Codes
(160.3900) Materials : Metals
(160.4670) Materials : Optical materials

ToC Category:

Original Manuscript: January 3, 2006
Revised Manuscript: February 14, 2006
Manuscript Accepted: February 15, 2006
Published: February 20, 2006

A. Alù, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Ziolkowski, and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  3. L. Landau, and E. M. Lifschitz, Electrodynamics of continuous media (Elsevier, 1984).
  4. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires and left-handed materials," J. Nonlinear Opt. Phys. Mater. 11, 65-74 (2002). [CrossRef]
  5. A. K. Sarychev and V. M. Shalaev, "Magnetic resonance in metal nanoantennas," in Complex Mediums V: Light and Complexity, Proc. SPIE 5508, 128-137 (2004). [CrossRef]
  6. A. K. Sarychev and V. M. Shalaev, "Plasmonic nanowire metamaterials," in Negative Refraction Metamaterials: Fundamental Properties and Applications, G. V. Eleftheriades and K. G. Balmain, ed. (John Wiley & Sons, Inc., Hoboken, NJ, 2005), Chap. 8, pp. 313-337. [CrossRef]
  7. V.M. Shalaev, W. Cai, U.K. Chettiar, H.-K. Yuan, A.K. Sarychev, V.P. Drachev, and A.V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  8. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Optics Letters 30, 3198-3200 (2005). [CrossRef] [PubMed]
  9. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438, 335-338 (2005). [CrossRef] [PubMed]
  10. V. A. Podolskiy, and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B 71, 201101 (2005). [CrossRef]
  11. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  12. S. O’Brien, D. McPeake, S. A. Ramakrishna, and J. B. Pendry, "Near-infrared photonic band gaps and nonlinear effects in negative magnetic metamaterials," Phys. Rev. B 69, 241101 (2004). [CrossRef]
  13. G. Shvets, and Y. A. Urzhumov, "Engineering electromagnetic properties of periodic nanostructures using electrostatic resonance," Phys. Rev. Lett. 93, 243902 (2004). [CrossRef]
  14. M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "Towards photonic crystal matematerials: Creating magnetic emitters in photonic crystals," Appl. Phys. Lett. 82, 1069-1071 (2003). [CrossRef]
  15. A. Ishimaru, S. W. Lee, Y. Kuga, and V. Jandhyala, "Generalized constitutive relations for metamaterials based on the quasi-static Lorentz theory," IEEE Trans. Antennas Propag. 51, 2550-2557 (2003). [CrossRef]
  16. The forms of excitations used in Eqs. (2) and (12) are solely employed for the purpose of isolating respectively the magnetic and electric response of the nano-ring of Fig. 1 from one another, which is necessary for evaluating the polarizability coefficients separately. Once these coefficients are determined, they indeed represent the polarizability response of the material to any form of excitation (e.g., a plane wave). This approach is commonly used in the technical literature (see, e.g., [15]).
  17. J. D. Jackson, Classical Electrodyanmics (Wiley, 1998).
  18. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  19. S. Tretyakov, Analytical Modeling in Applied Electromagnetics (Artech House, 2003).
  20. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phys. Rev. B 62, 15299 (2000). [CrossRef]
  21. The Drude model employed here accurately describes the frequency dispersion of silver over all the visible frequencies [20]. The minimal difference between this model and realistic experimental data, possibly due to the finite size of the spheres, resonant interband transitions in the material, etc., would not significantly affect the present discussion and approach, since the inherent resonant phenomena here described may only be slightly shifted in frequency or modified in strength, still preserving the validity of the concepts pointed out here.
  22. CST Microwave StudioTM 5.0, CST of America, Inc., www.cst.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: GIF (2580 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited