OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 4 — Feb. 20, 2006
  • pp: 1673–1684

Ultra-sensitive ethylene post-harvest monitor based on cavity ring-down spectroscopy

Edward H. Wahl, Sze M. Tan, Sergei Koulikov, Boris Kharlamov, Christopher R. Rella, Eric R. Crosson, Dave Biswell, and Barbara A. Paldus  »View Author Affiliations

Optics Express, Vol. 14, Issue 4, pp. 1673-1684 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (515 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the application of cavity ring-down spectroscopy (CRDS) to the detection of trace levels of ethylene in ambient air in a cold storage room of a fruit packing facility over a several month period. We compare these results with those obtained using gas chromatography (GC), the current gold standard for trace ethylene measurements in post-harvest applications. The CRDS instrument provided real-time feedback to the facility, to optimize the types of fruit stored together, and the amount of room ventilation needed to maintain sub-10 ppb ethylene levels for kiwi fruit storage. Our CRDS instrument achieved a detection limit of two parts-per-billion volume (ppbv) in 4.4 minutes of measurement time.

© 2006 Optical Society of America

OCIS Codes
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:

Original Manuscript: September 8, 2005
Revised Manuscript: January 30, 2006
Manuscript Accepted: February 5, 2006
Published: February 20, 2006

Edward Wahl, Sze Tan, Sergei Koulikov, Boris Kharlamov, Christopher Rella, Eric Crosson, Dave Biswell, and Barbara Paldus, "Ultra-sensitive ethylene post-harvest monitor based on cavity ring-down spectroscopy," Opt. Express 14, 1673-1684 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Blankenship and J. Kemble, "Growth, fruiting, and ethylene binding of tomato plants in response to chronic ethylene exposure," J. Hort. Sci. 71, 65-69 (1996).
  2. D. A. Hunter, N. Lange, and M. S. Reid, "Physiology of Flower Senescence," L. Nooden, ed., in Cell Death in Plants. (2003) pp. 307-319.
  3. L. M. Mortensen, "Effect of ethylene on growth of greenhouse lettuce at different light and temperature levels," Scientia Horticulturae 39, 97-103 (1989). [CrossRef]
  4. S. M. Blankenship, D. A. Bailey, and J. E. Miller, "Effects of continuous low levels of ethylene on growth and flowering of Easter lily," Scientia Horticulturae 5, 311-317 (1993). [CrossRef]
  5. J. M. Dole and H. F. Wilkins, Floriculture principles and practices, (Prentice Hall, 1999), pp. 613.
  6. J. L. Gibson, B. E. Whipker, S. Blankenship, M. Boyette, T. Creswell, J. Miles, and M. Peet, "Ethylene: Sources, Symptoms, and Prevention for Greenhouse Crops," North Carolina State University College of Agriculture & Life Science, Dept. of Horticultural Science, Horticulture Information Leaflet 530, 7/2000.
  7. E.F. Poenicke, S.J. Kays, D.A. Smittle, and R.E. Williamson, "Ethylene in relation to postharvest quality deterioration in processing cucumbers," J. Amer. Soc. Hort. Sci. 102, 303-306 (1977).
  8. J. Thompson, A. Kader, and K. Sulva, "Compatibility chart for fruits and vegetables in short-term transport or storage," University of California Division of Agriculture and Natural Resources, Publication 21560, http://postharvest.ucdavis.edu/Pubs/postthermo.shtml
  9. A. A. Kader, "A Perspective on postharvest Horticulture, (1978-2003)," HortScience 38, (August, 2003).
  10. J. R. Gorny, and A. A. Kader, "Ethylene monitoring equipment performance tests," Perishables Handling Quarterly, 97, 25-26 (1999).
  11. H. Pham-Tuan, J. Vercammen, and C. Davos, "Automated capillary gas chromatographic system to monitor Ethylene emitted from biological materials," J. Chromatogr. A 868, 249-259 (2000). [CrossRef] [PubMed]
  12. H. S. M. De Vries, M. A. J. Wasono, and F. J. M Harren, "Ethylene and CO2 emission rates and pathways in harvested fruits investigated by Laser Photothermal Deflection and Photoacoustic Techniques," Postharvest Biol Tech 8, 1-10 (1996). [CrossRef]
  13. K. W. Busch and M. A. Busch, ed., Cavity ring-down Spectroscopy: an ultrarace-absroption measurement technique, (Oxford University Press, Washington, D.C., 1999). [CrossRef]
  14. B. G. Fidric, R. A. Provencal, S. M. Tan, E. R. Crosson, A. A Kachanov, and B. A. Paldus, "Bananas, explosives, and the future of cavity ring-down Spectroscopy," Opt. Photon. News 14, 25-29 (2003). [CrossRef]
  15. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, "A laser locked cavity ring-down spectrometer employing an analog detection scheme," Rev. Sci. Instrum. 71, 347-353, (2000). [CrossRef]
  16. R. N. Zare, J. Xie, and B. A. Paldus, "Ring resonant cavities for spectroscopy," U. S. patent 5,912,740 (1999)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited