OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 4 — Feb. 20, 2006
  • pp: 1685–1699

Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow

Fabrice Merenda, Gerben Boer, Johann Rohner, Guy Delacrétaz, and René-Paul Salathé  »View Author Affiliations


Optics Express, Vol. 14, Issue 4, pp. 1685-1699 (2006)
http://dx.doi.org/10.1364/OE.14.001685


View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied the transverse and axial equilibrium positions of dielectric micro-spheres trapped in a single-beam gradient optical trap and exposed to an increasing fluid flow transverse to the trapping beam axis. It is demonstrated that the axial equilibrium position of a trapped micro-sphere is a function of its transverse position in the trapping beam. Moreover, although the applied drag-force acts perpendicularly to the beam axis, reaching a certain distance r0 from the beam axis (r0/a ≃ 0.6, a being the sphere radius) the particle escapes the trap due to a breaking axial equilibrium before the actual maximum transverse trapping force is reached. The comparison between a theoretical model and the measurements shows that neglecting these axial equilibrium considerations leads to a theoretical overestimation in the maximal optical transverse trapping forces of up to 50%.

© 2006 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation

ToC Category:
Trapping

History
Original Manuscript: January 4, 2006
Revised Manuscript: February 3, 2006
Manuscript Accepted: February 10, 2006
Published: February 20, 2006

Virtual Issues
Vol. 1, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Fabrice Merenda, Gerben Boer, Johann Rohner, Guy Delacrétaz, and René-Paul Salathé, "Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow," Opt. Express 14, 1685-1699 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-4-1685


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  2. M. Ozkan, M. Wang, C. Ozkan, R. Flynn, A. Birkbeck, and S. Esener, "Optical manipulation of objects and biological cells in microfluidic devices," Biomed. Microdevices 5, 61-67 (2003). [CrossRef]
  3. J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, "Optical tweezers applied to a microfluidic system," Lab. Chip 4, 196-200 (2004). [CrossRef] [PubMed]
  4. J. Glückstad, "Microfluidics: Sorting particles with light," Nat. Mater. 3, 9-10 (2004). [CrossRef] [PubMed]
  5. M. M. Wang, E. Tu, D. E. Raymond, J. M. Yang, H. C. Zhang, N. Hagen, B. Dees, E. M. Mercer, A. H. Forster, I. Kariv, P. J. Marchand, and W. F. Butler, "Microfluidic sorting of mammalian cells by optical force switching," Nat. Biotechnol. 23, 83-87 (2005). [CrossRef]
  6. S. L. Neale, M. P. Macdonald, K. Dholakia, and T. F. Krauss, "All-optical control of microfluidic components using form birefringence," Nat. Mater. 4, 530-533 (2005). [CrossRef] [PubMed]
  7. K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  8. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  9. G. Roosen, "La lévitation optique de sphéres," Can. J. Phys. 57, 1260-1279 (1979). [CrossRef]
  10. A. Ashkin, "Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime," Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]
  11. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989). [CrossRef]
  12. K. F. Ren, G. Greha, and G. Gouesbet, "Radiation Pressure Forces Exerted on a Particle Arbitrarily Located in a Gaussian-Beam by Using the Generalized Lorenz-Mie Theory, and Associated Resonance Effects," Opt. Commun. 108, 343-354 (1994). [CrossRef]
  13. W. H. Wright, G. J. Sonek, and M. W. Berns, "Parametric Study of the Forces on Microspheres Held by Optical Tweezers," Appl. Opt. 33, 1735-1748 (1994). [CrossRef] [PubMed]
  14. A. Rohrbach and E. H. K. Stelzer, "Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations," Appl. Opt. 41, 2494-2507 (2002). [CrossRef] [PubMed]
  15. D. Ganic, X. S. Gan, and M. Gu, "Exact radiation trapping force calculation based on vectorial diffraction theory," Opt. Express 12, 2670-2675 (2004). [CrossRef] [PubMed]
  16. O. Moine and B. Stout, "Optical force calculations in arbitrary beams by use of the vector addition theorem," J. Opt. Soc. Am. B 22, 1620-1631 (2005). [CrossRef]
  17. S. Sato, M. Ishigure, and H. Inaba, "Optical Trapping and Rotational Manipulation of Microscopic Particles and Biological Cells Using Higher-Order Mode Nd-Yag Laser-Beams," Electron. Lett. 27, 1831-1832 (1991). [CrossRef]
  18. A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, "Theory of trapping forces in optical tweezers," Proc. R. Soc. London Ser. A-Math.Phys. Eng. Sci. 459, 3021-3041 (2003). [CrossRef]
  19. H. Felgner, O. Muller, and M. Schliwa, "Calibration of Light Forces in Optical Tweezers," Appl. Opt. 34, 977-982 (1995). [CrossRef] [PubMed]
  20. N. B. Simpson, D. McGloin, K. Dholakia, L. Allen, and M. J. Padgett, "Optical tweezers with increased axial trapping efficiency," J. Mod. Opt. 45, 1943-1949 (1998). [CrossRef]
  21. A. T. O’Neill and M. J. Padgett, "Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers," Opt. Commun. 193, 45-50 (2001). [CrossRef]
  22. N. Malagnino, G. Pesce, A. Sasso, and E. Arimondo, "Measurements of trapping efficiency and stiffness in optical tweezers," Opt. Commun. 214, 15-24 (2002). [CrossRef]
  23. P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic Diffraction of Light Focused through a Planar Interface between Materials of Mismatched Refractive-Indexes - an Integral-Representation," J. Opt. Soc. Am. A 12, 1605-1605 (1995). [CrossRef]
  24. P. Torok, P. Varga, Z. Laczik, and G. R. Booker, "Electromagnetic Diffraction of Light Focused through a Planar Interface between Materials of Mismatched Refractive-Indexes - an Integral-Representation -errata," J. Opt. Soc. Am. A 12, 1605-1605 (1995). [CrossRef]
  25. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, "Aberrations in Confocal Fluorescence Microscopy Induced by Mismatches in Refractive-Index," J. Microsc.-Oxford 169, 391-405 (1993). [CrossRef]
  26. K. C. Neuman, E. A. Abbondanzieri, and S. M. Block, "Measurement of the effective focal shift in an optical trap," Opt. Lett. 30, 1318-1320 (2005). [CrossRef] [PubMed]
  27. J. Happel and H. Brenner, eds., Low Reynolds Number Hydrodynamics, 2nd ed. (Kluwer Academic, Dordecht, the Netherlands, 1991).
  28. H. C. van de Hulst, "Light Scattering by Small Particles," pp. 114-227 (Dover Press, New York, 1981).
  29. P. C. Ke and M. Gu, "Characterization of trapping force in the presence of spherical aberration," J. Mod. Opt. 45, 2159-2168 (1998) [CrossRef]
  30. E. Theofanidou, L. Wilson,W. J. Hossack and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145 (2004). [CrossRef]
  31. Y. Roichman, A. Waldron, E. Gardel and D. G. Grier, "Performance of optical traps with geometric aberrations," Appl. Opt., in press (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (516 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited