OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 5 — Mar. 6, 2006
  • pp: 1789–1796

Improved omnidirectional reflectors in chalcogenide glass and polymer by using the silver doping technique

T. J. Clement, N. Ponnampalam, H. T. Nguyen, and R. G. DeCorby  »View Author Affiliations

Optics Express, Vol. 14, Issue 5, pp. 1789-1796 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (644 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the fabrication and characterization of omnidirectional reflectors based on silver-doped chalcogenide glass and polymer. We deposited periodically alternating layers of thermally evaporated Ge33As12Se55 chalcogenide glass, sputtered silver, and spun-cast polyamide-imide polymer. The silver was subsequently dissolved into each adjacent chalcogenide glass layer, either by exposing the multilayer to visible light (photodoping) or by heating the sample. The resultant silver concentration within the chalcogenide glass layers is estimated to be ~20 at. %. Silver doping red-shifts the band edge of the glass, and produces an increase of ~0.3–0.4 in the refractive index. The glass retains good transparency in the near infrared after doping, and the technique enables the omnidirectional bandwidth to be increased from ~100 nm to ~200 nm in the 1550 nm wavelength region.

© 2006 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.2750) Materials : Glass and other amorphous materials
(230.4170) Optical devices : Multilayers

ToC Category:
Integrated Optics

Original Manuscript: January 11, 2006
Revised Manuscript: February 24, 2006
Manuscript Accepted: February 24, 2006
Published: March 6, 2006

Thomas Clement, N. Ponnampalam, H. T. Nguyen, and R. G. DeCorby, "Improved omnidirectional reflectors in chalcogenide glass and polymer by using the silver doping technique," Opt. Express 14, 1789-1796 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett. 23, 1573-1575 (1998). [CrossRef]
  2. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  3. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko, "All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control," J. Lightwave Technol. 17, 2018-2024 (1999). [CrossRef]
  4. S.-H. Kim, and C. K. Hwangbo, "Design of omnidirectional high reflectors with quarter-wave dielectric stacks for optical telecommunication bands," Appl. Opt. 41, 3187-3192 (2002). [CrossRef] [PubMed]
  5. J. Lekner, "Omnidirectional reflection by multilayer dielectric mirrors," J. Opt. A: Pure Appl. Opt. 2, 349-352 (2000). [CrossRef]
  6. S. Chao, T.-K. Wang, and J.-S. Chen, "Graphic method for numerical analysis of a periodically stratified thin-film omnidirectional reflector," Appl. Opt. 44, 3448-3453 (2005). [CrossRef] [PubMed]
  7. J.-Q. Xi, M. Ojha, J. L. Plawsky, W. N. Gill, J. K. Kim, and E. F. Schubert, "Internal high-reflectivity omni-directional reflectors," Appl. Phys. Lett. 87, 031111-1-3 (2005). [CrossRef]
  8. G. R. Hadley, J. G. Fleming, and S.-Y. Lin, "Bragg fiber design for linear polarization," Opt. Lett. 29, 809-811 (2004). [CrossRef] [PubMed]
  9. Y. Yi, S. Akiyama, P. Bermel, X. Duan, and L. C. Kimerling, "On-chip Si-based Bragg cladding waveguide with high index contrast bilayers," Opt. Express 12, 4775-4780 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4775. [CrossRef] [PubMed]
  10. S.-S. Lo, M.-S. Wang, C.-C. Chen, "Semiconductor hollow optical waveguides formed by omni-directional reflectors," Opt. Express 12, 6589-6593 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-26-6589. [CrossRef] [PubMed]
  11. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, "Modal analysis of Bragg onion resonators," Opt. Lett. 29, 424-426 (2004). [CrossRef] [PubMed]
  12. W. Lin, G. P. Wang, and S. Zhang, "Design and fabrication of omnidirectional reflectors in the visible range," J. Mod. Opt. 52, 1155-1160 (2005). [CrossRef]
  13. R. G. DeCorby, H. T. Nguyen, P. K. Dwivedi, and T. J. Clement, "Planar omnidirectional reflectors in chalcogenide glass and polymer," Opt. Express 13, 6228-6233 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6228 [CrossRef] [PubMed]
  14. A. V. Kolobov,and S. R. Elliott, "Photodoping of amorphous chalcogenides by metals," Adv. Phys. 40, 625-684 (1991). [CrossRef]
  15. M. Frumar, and T. Wagner, "Ag doped chalcogenide glasses and their applications," Curr. Opin. Solid State and Mater. Sci. 7, 117-126 (2003). [CrossRef]
  16. K. Ogusu, S. Maeda, M. Kitao, H. Li, and M. Minakata, "Optical and structural properties of Ag(Cu)-As2Se3 chalcogenide films prepared by photodoping," J. Non-Cryst. Solids 347, 159-165, (2004). [CrossRef]
  17. A. Wagner, D. Barr, T. Venkatesan, W. S. Crane, V. E. Lamberti, K. L. Tai, and R. G. Vadimsky, "Germanium selenide: A resist for low-energy ion beam lithography," J. Vac. Sci. Technol. 19, 1363-1367 (1981). [CrossRef]
  18. Y.-C. Liang, H. Yamanaka, and K. Tada, "Exposure characteristics of electron-beam induced silver doping and its application to grating device fabrication in chalcogenide glass," Thin Solid Films 165, 55-65 (1988). [CrossRef]
  19. J. Fick, B. Nicholas, C. Rivero, K. Elshot, R. Irwin, K. A. Richardson., M. Fischer, and R. Vallee, "Thermally activated silver diffusion in chalcogenide thin films," Thin Solid Films 418, 215-221 (2002). [CrossRef]
  20. T. I. Kosa, T. Wagner, P. J. S. Ewen, and A. E. Owen, "Index of refraction of Ag-doped As33S67 films: measurement and analysis of dispersion," Philos. Mag. B. 71, 311-318 (1995). [CrossRef]
  21. K. Ogusu, J. Yamasaki, and S. Maeda, "Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching," Opt. Lett. 29, 265-267 (2004). [CrossRef] [PubMed]
  22. A. Yoshikawa, O. Ochi, H. Nagai, Y. Mizushima, "A novel inorganic photoresist utilizing Ag photodoping in Se-Ge glass films," Appl. Phys. Lett. 29, 677-679 (1976). [CrossRef]
  23. C. W. Slinger, A. Zakery, P. J. S. Ewen, and A. E. Owen, "Photodoped chalcogenides as potential infrared holographic media," Appl. Opt. 31, 2490-2498 (1992). [CrossRef] [PubMed]
  24. T. Wagner, and P. J. S. Ewen, "Photo-induced dissolution effect in Ag/As33S67 multilayer structures and its potential applications," J. Non-Cryst. Solids 266-269, 979-984 (2000). [CrossRef]
  25. T. Wagner, G. Dale, P. J. S. Ewen, A. E. Owen, and V. Perina, "Kinetics of the thermally and photoinduced solid state reaction of Ag with As33S67 films," J. Appl. Phys. 87, 7758-7767 (2000). [CrossRef]
  26. K. Suzuki, K. Ogusu, and M. Minakata, "Single-mode Ag-As2Se3 strip-loaded waveguides for applications to all-optical devices," Opt. Express 13, 8634-8641 (2005) http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8634 [CrossRef] [PubMed]
  27. R. G. DeCorby, N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin, and S. O. Kasap, "High index contrast waveguides in chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005). [CrossRef]
  28. K. Ogusu, Y. Hosokawa, S. Maeda, M. Minikata, and H. Li, "Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films," J. Non-Cryst. Solids. 351, 3132-3138 (2005). [CrossRef]
  29. "Torlon polyamide-imide design guide" (Solvay Advanced Polymers), http://www.solvayadvancedpolymers.com/static/wma/pdf/9/9/7/TDG_2003.pdf.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited