OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 5 — Mar. 6, 2006
  • pp: 1899–1904

Blue upconversion luminescence generation in Ce3+:Gd2SiO5 crystals by infrared femtosecond laser irradiation

Yongjun Dong, Jun Xu, Guoqing Zhou, Guangjun Zhao, Mingyin Jie, Lu Yun Yang, Liangbi Su, Jianrong Qiu, Weiwei Feng, and Lihuang lin  »View Author Affiliations

Optics Express, Vol. 14, Issue 5, pp. 1899-1904 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (152 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Blue frequency-upconversion fluorescence emission has been observed in Ce3+-doped Gd2SiO5 single crystals, pumped with 120-fs 800 nm IR laser pulses. The observed fluorescence emission peaks at about 440nm is due to 5d→4f transition of Ce3+ ions. The intensity dependence of the blue fluorescence emission on the IR excitation laser power obeys the cubic law, demonstrating three-photon absorption process. Analysis suggested that three-photon simultaneous absorption induced population inversion should be the predominant frequency upconversion mechanism.

© 2006 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(190.4180) Nonlinear optics : Multiphoton processes
(190.7220) Nonlinear optics : Upconversion
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Nonlinear Optics

Original Manuscript: January 6, 2006
Revised Manuscript: February 15, 2006
Manuscript Accepted: February 18, 2006
Published: March 6, 2006

Yongjun Dong, Jun Xu, Guoqing Zhou, Guangjun Zhao, Mingyin Jie, LuYun Yang, Liangbi Su, Jianrong Qiu, Weiwei Feng, and Lihuang Lin, "Blue upconversion luminescence generation in Ce3+:Gd2SiO5 crystals by infrared femtosecond laser irradiation," Opt. Express 14, 1899-1904 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Scheps, "Upconversion laser processes," Prog. Quantum Electron. 20, 271-358 (1996). [CrossRef]
  2. G. S. He, L. Yuan, Y. Cui, M. Li, and P. N. Prasad, "Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material," J. Appl. Phys. 81,2529-2537 (1997). [CrossRef]
  3. W. Tutt and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials," Prog. Quantum Electron. 17,299-338 (1993). [CrossRef]
  4. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Rockel, S. R. Marder, and J. W. Perry, "Two-photon absorption and broadband optical limiting with bis-donor stilbenes," Opt. Lett. 22,1843-1845 (1997). [CrossRef]
  5. E. Downing, L. Hesselink, J. Raltson, R. Macfarlane, "A three-color, solid-state, three-dimensional display," Science 273,1185-1189 (1996). [CrossRef]
  6. J. S. Chivian, W. E. Case, D. D. Edden, "The photon avalanche: A new phenomenon in Pr3 + -based infrared quantum counters," Appl. Phys. Lett. 35, 124-125 (1979). [CrossRef]
  7. R. S. Niedbala, H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milunic, P. Bourdelle, and R. Vallejo, "Detection of Analytes by Immunoassay using up-converting phosphor technology," Anal. Biochem. 293,22-30 (2001). [CrossRef] [PubMed]
  8. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22,132-134 (1997). [CrossRef] [PubMed]
  9. A. M. R. Fisher, A. L. Murphree, and C. J. Gomer, "Clinical and preclinical photodynamic therapy," Laser Surg. Med. 17,2-31 (1995) [CrossRef]
  10. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248,73-76 (1990). [CrossRef] [PubMed]
  11. M. E. Koch, A. W. Kueny, and W. E. Case, "Photon avalanche upconversion laser at 644 nm," Appl. Phys. Lett. 56, 1083-1085 (1990). [CrossRef]
  12. S. C. Goh, R. Pattie, C. Byrne, and D. Coulson, "Blue and red laser action in Nd3+:Pr3 + co-doped fluorozirconate glass," Appl. Phys. Lett. 67, 768-770 (1995). [CrossRef]
  13. F. Lahoz, I. R. Martin, and J. M. Calvilla-Quintero, "Ultraviolet and white photon avalanche upconversion in Ho3+-doped nanophase glass ceramics," Appl. Phys. Lett. 86, 051106-051108 (2005). [CrossRef]
  14. S. Q. Man, E. Y. B. Pun, and P. S. Chung, "Upconversion luminescence of Er3 + in alkali bismuth gallate glasses," Appl. Phys. Lett. 77, 483-485 (2000). [CrossRef]
  15. D. C. Nguyen, G. E. Faulkner, M. E. Weber, and M. Dulick, "Blue upconversion thulium laser," in Solid State Lasers, George Dube Ed., Proc. SPIE 1223, 54-63 (1990). [CrossRef]
  16. R. R. Jacobs, W. F. Krupke, and M. J. Weber, "Measurement of excited-state-absorption loss for Ce3 + in Y3Al5O12 and implications for tunable 5d→4f rare-earth lasers," Appl. Phys. Lett. 33, 410-412 (1978). [CrossRef]
  17. N. Sarukura, Z. Liu, and Y. Segawa, "Ultraviolet subnanosecond pulse train generation from an all-solid-state Ce:LiCAF laser," Appl. Phys. Lett. 67, 602-604 (1995). [CrossRef]
  18. J. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao,"Photostimulated luminescence of Ce3 + -doped alkali borate glasses," Appl. Phys. Lett. 71, 43-45 (1997). [CrossRef]
  19. A. P. Davey, E. Bourdin, F. Henari, and W. Blau, "Three photon induced fluorescence from a conjugated organic polymer for infrared frequency upconversion," Appl. Phys. Lett. 67, 884-885 (1995) [CrossRef]
  20. G. S. He, J. Dai, T.-C. Lin, P. P. Markowicz, and P. N. Prasad, "Ultrashort 1.5-µm laser excited up converted stimulated emission based on simultaneous three-photon absorption," Opt. Lett. 28, 719-721 (2003). [CrossRef] [PubMed]
  21. L. Wang, Z. Cheng, Q. Ping, and X. Hou, "Three-photon photoemission from GaAs-O-Cs negative electron affinity surfaces induced by 2.06 µm nanosecond laser pulses," Appl. Phys. Lett. 67, 91-93 (1995). [CrossRef]
  22. J. W. M. Chon, M. Gu, C. Bullen and P. Mulvaney, "Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals," Appl. Phys. Lett. 84, 4472-4474 (2004). [CrossRef]
  23. K. S. Bindra, H. T. Bookey, A. K. Kar, B. S. Wherrett, X. Liu and A. Jha, "Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption," Appl. Phys. Lett. 79, 1939-1941 (2001). [CrossRef]
  24. H. You and M. Nogami, "Three-photon-excited fluorescence of Al2O3-SiO2 glass containing Eu3+ ions by femtosecond laser irradiation," Appl. Phys. Lett. 84, 2076-2078 (2004). [CrossRef]
  25. M. Watanabe, S. Juodkazis, H. B. Sun, S. Matsuo, and H. Misawa, "Two-photon readout of three-dimensional memory in silica," Appl. Phys. Lett. 77, 13-15 (2000). [CrossRef]
  26. W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106 -1109(2002). [CrossRef] [PubMed]
  27. K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, "In vivo dendritic calcium dynamics in neocortical pyramidal neurons," Nature 385, 161-165 (1997). [CrossRef] [PubMed]
  28. J. Bewersdorf, R. Pick, and S. W. Hell, "Multifocal multiphoton microscopy," Opt. Lett. 23, 655-657 (1998). [CrossRef]
  29. L.-Y. Yang, Y.-J. Dong, D.-P. Chen, C. Wang, N. Da, X. W. Jiang, C. Zhu, J.-R. Qiu, "Upconversion luminescence from 2E state of Cr3+ in Al2O3 crystal by infrared femtosecond laser irradiation," Opt. Express. 13, 7893-7898 (2005)http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-20-7893. [CrossRef] [PubMed]
  30. L. Yang, C. Wang, Y. Dong, N. Da, X. Hu, D. Chen, J. Qiu, "Three-photon-excited upconversionluminescence of YVO4 single crystal by infrared femtosecond laser irradiation," Opt. Express. 13, 10157-10162 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-25-10157. [CrossRef] [PubMed]
  31. H. You and M. Nogami, "Upconversion luminescence of Al2O3-SiO2:Ce3+ glass by femtosecond laser irradiation," Appl. Phys. Lett. 85, 3432-3434 (2004). [CrossRef]
  32. R. P. Chin, Y. R. Shen, and V. Petrova-koch, "Photouminescence from Porous Silicon by Infrared Multiphoton Excitation," Science 270, 776-778 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited