OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 5 — Mar. 6, 2006
  • pp: 1933–1941

Terahertz parametric generation photonic band gap structure with negligible structural dispersion in the optical range

Yuchuan Chen, Mark Cronin-Golomb, Lei Zhang, Jing Zhao, and James J. Foshee  »View Author Affiliations


Optics Express, Vol. 14, Issue 5, pp. 1933-1941 (2006)
http://dx.doi.org/10.1364/OE.14.001933


View Full Text Article

Enhanced HTML    Acrobat PDF (203 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a photonic band gap (PBG) structure (or nonlinear photonic crystal) design for terahertz (THz) wave parametric generation, whose component materials have a small refractive index difference in the near infrared and a large index difference for THz waves. The structural dispersion of such a PBG structure is strong in the THz range but negligible in the optical range. The former allows the phase-matched pump wavelength to be placed in the near infrared to eliminate two-photon absorption of the pump and signal beams. The latter leads to a crystal layer fabrication tolerances of a few micrometers and traditional polishing methods are suitable for device fabrication. The added design flexibility also allows the use of the most efficient crystal orientations.

© 2006 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 20, 2006
Revised Manuscript: February 24, 2006
Manuscript Accepted: February 25, 2006
Published: March 6, 2006

Citation
Yuchuan Chen, Mark Cronin-Golomb, Lei Zhang, Jing Zhao, and James J. Foshee, "Terahertz parametric generation photonic band gap structure with negligible structural dispersion in the optical range," Opt. Express 14, 1933-1941 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-5-1933


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. .J. C. Wiltse, "Introduction and overview of millimeter waves," in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1981), Vol. 4, Chap. 1.
  2. . P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002). [CrossRef]
  3. . B. Ferguson, and X. C. Zhang, "Materials for terahertz science and technology," Nat. Mater. 1, 26-33 (2002). [CrossRef]
  4. . A. Lisauskas, T. Loffler and H. G. Roskos, "Photonic terahertz technology," Semicond. Sci. Technol. 20, July 2005 (Special Issue: Photonic Terahertz Technology). [CrossRef]
  5. . Y. U. Jeong, G. M. Kazakevitch, H. J. Cha, S. H. Park, and B. C. Lee, "Application of a wide-band compact FEL on THz imaging," Nucl. Instrum. and Methods in Phys. Res. A 543, 90-95 (2005). [CrossRef]
  6. . G. Chin, "Optically pumped submillimeter laser hetrodyne receivers: Astrophysical observations and recent technical developments," in Proc.IEEE 80, 1788-1799 (1992). [CrossRef]
  7. . J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-555 (1994). [CrossRef] [PubMed]
  8. . D. R. Chamberlin, E. Brundermann, and E. E. Haller, "Planar contact geometry for far-infrared germanium lasers," Appl. Phys. Lett. 74, 3761-3763 (1999). [CrossRef]
  9. . G. I. Haddad and R. J. Trew, "Microwave solid-state active devices," IEEE Trans. Microwave Theory Tech. 50, 760-779 (2002). [CrossRef]
  10. .A Maestrini, J. Ward, J. Gill, H. Javadi, E. Schlecht, G. Chattopadhyay, F. Maiwald, N. R. Erickson, and I. Mehdi, "A 1.7-1.9 THz local oscillator source," IEEE Microw. Wirel. Compon. Lett. 14, 253-255 (2004). [CrossRef]
  11. .A. F. Krupnov, "Phase lock-in of mm/submm backward wave oscillators: Development, evolution, and applications," Int. J. of Infrared and Millim. Waves 22, 1-18 (2001). [CrossRef]
  12. .E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, "Photomixing up to 3.8-THz in low-temperature-grown GaAs," Appl. Phys. Lett. 66, 285-287 (1995). [CrossRef]
  13. .X. C. Zhang, Y. Jin, and X. F. Ma, "Coherent measurement of THz optical rectification from electrooptic crystals," Appl. Phys. Lett. 61, 2764-2766 (1992). [CrossRef]
  14. .K. Kawase, M. Sato, T. Taniuchi and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett. 68, 2483-2485 (1996). [CrossRef]
  15. .W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, "Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002). [CrossRef]
  16. .M. M. Fejer, G. A. Margel, D. H. Jundt, and R. L. Byer, "Quasi phasematched second harmonic generation: Tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654, 1992. [CrossRef]
  17. .A. Mustelier, E. Rosencher, P. Kupecek, A. Godard, M. Baudrier, M. Lefebvre, M. Poulat, G. Mennerat, C. Pasquer, and P. Lemasson, "Midinfrared difference frequency generation in quasi-phase matched diffusion bonded ZnSe plates," Appl. Phys. Lett. 84, 4424-4426 (2004). [CrossRef]
  18. .J. P. Feve, J. J. Zondy, B. Boulanger, R. Bonnenberger, X. Cabirol, B. Menaert, and G. Marnier, "Optimized blue light generation in optically contacted walk-off compensated RbTiOAsO4 and KTiOP1-yAsyO4," Opt. Commun. 161, 359-369 (1999). [CrossRef]
  19. .Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002). [CrossRef]
  20. .V. Berger, "Nonlinear photonic crystals," Phys. Rev. lett. 81, 4136-4139 (1998). [CrossRef]
  21. .N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, "Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000). [CrossRef] [PubMed]
  22. .M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, "Dispersive properties of finite, one-dimensional photonic band gap structures: Applications to nonlinear quadratic interactions," Phys. Rev. E 60, 4891-4898 (1999). [CrossRef]
  23. .M. Cronin-Golomb, L. Zhang, J. Zhao, and J. J. Foshee, "Terahertz wave generation by photonic bandgap materials," in Terahertz Gigahertz Electronics and Photonics III, R. J. Hwu, ed., Proc. SPIE 5354, 10-17 (2004). [CrossRef]
  24. .J. W. Haus., P. Powers., P. Bojja, M. Torres-Cisneros, M. Scalora, M. J. Bloemer, N. Akozbek, and M. A. Meneses-Nava, "Enhanced tunable terahertz Generation in photonic band-gap structures," Laser Phys. 14, 635-641 (2004).
  25. .E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and Electronics," Phys. Rev. Lett. 58, 1059-1062 (1987). [CrossRef]
  26. .K. S. Abedin and H. Ito, "Temperature-dependent dispersion relation of ferroelectric lithium tantalate," J. Appl. Phys. 80, 6561-6563 (1996). [CrossRef]
  27. .M. Schall, H. Helm, and S. R. Keiding, "Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy," Int. J. of Infrared and Millim. Waves 20, 595-604 (1999). [CrossRef]
  28. .Michael Bass, Handbook of Optics, 2nd ed., (McGRAW-Hill, New York, 1995), Vol. II, Chap 33.
  29. .P. Mounaix, L. Sarger, J. P. Caumes, and E. Freysz, "Characterization of non-linear Potassium crystals in the Terahertz frequency domain," Opt. Commun. 242, 631-639 (2004). [CrossRef]
  30. .P. Yeh, "Optics of anisotropic layered media: A new 4×4 matrix algebra," Surf. Science 96, 41 53 (1980). [CrossRef]
  31. .Y. Jeong and B. Lee, "Matrix analysis for layered quasi-phase-matched media considering multiple reflection and pump wave depletion," IEEE J. Quantum Electron. 35, 162-172 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited