OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 6 — Mar. 20, 2006
  • pp: 2047–2061

Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors

David Crouse, Mark Arend, Jianping Zou, and Pavan Keshavareddy  »View Author Affiliations

Optics Express, Vol. 14, Issue 6, pp. 2047-2061 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (527 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A rigorous method of modeling the performance of metal-semiconductor-metal photodetectors (MSM-PD) that use several electromagnetic resonance (ER) modes and optical modes to enhance performance is presented. These ER and optical modes include surface plasmons, Wood-Rayleigh anomalies and vertical cavity modes. Five modeling algorithms are integrated together in a time-dependent way to model a 256 pseudo-random bit sequence (PRBS) of 850nm wavelength TM polarized light, the electromagnetic field distribution in the MSM-PD, quasi-static electric field, the charge carrier motion, and an algorithm to construct eye diagrams and analyze responsivity, inter-symbol interference (ISI) and bit error ratio (BER). We report on the use of a combination of ER and optical modes in channeling more than 83% of the incident light into the silicon even though 60% of the Si surface area is covered with metal contacts. Also, this channeled light is localized near the Si surface below the contact window. The absorption in the metal contacts, reflection, diffraction, electromagnetic field profiles, Poynting vector, photocurrent, eye diagrams, quality factors, responsivity and BER are calculated. Designs for Si MSM-PDs with a bandwidth of 100Gb/s, responsivities in the range of 0.05→0.30A/W and BERs in the range of 10-20→10-10 are described.

© 2006 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: November 7, 2005
Revised Manuscript: March 2, 2006
Manuscript Accepted: March 4, 2006
Published: March 20, 2006

David Crouse, Mark Arend, Jianping Zou, and Pavan Keshavareddy, "Numerical modeling of electromagnetic resonance enhanced silicon metal-semiconductor-metal photodetectors," Opt. Express 14, 2047-2061 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Soref, "Silicon-based optoelectronics," Proc. IEEE 81, 1687-1706 (1993). [CrossRef]
  2. S. Averin, R. Sachot, J. Hugi, M. De Fays, and M. Ilegems, "Two-dimensional device modeling and analysis of GaInAs metal-semiconductor-metal photodiode structures," J. Appl. Phys. 80, 1553-1558 (1996). [CrossRef]
  3. S. Y. Chou, M. Liu, "Nanoscale tera-hertz metal-semiconductor-metal photodetectors," IEEE J. Quantum Electron 28, 2358 (1992). [CrossRef]
  4. R. Li, J. D. Schaub, S. M. Csutak, and J. C. Campbell, "A high-speed monolithic silicon photoreceiver fabricated on SOI," IEEE Photon. Technol. Lett. 12, 1046-1048 (2000). [CrossRef]
  5. M. Y. Liu, E. Chen and S. Y. Chou, "140 Ghz metal-semiconductor-metal photodetectors on silicon on insulator substrate with a scaled layer," Appl. Phys. Lett. 65, 887-888 (1994). [CrossRef]
  6. S. Collin, F. Pardo, and J.-L. Pelouard, "Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector," Appl. Phys. Lett. 83, 1521-1523 (2003). [CrossRef]
  7. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004). [CrossRef]
  8. D. Crouse, "Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications," IEEE Trans. Electron Devices 52, 2365-2373 (2005). [CrossRef]
  9. D. Crouse and R. Solomon, "Numerical modeling of surface plasmon enhanced silicon on insulator avalanche photodiodes," Solid-State Electron. 491697-1701 (2005). [CrossRef]
  10. D. Crouse and P. Keshavareddy, "Electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors," J. Opt. A: Pure Appl. Opt. 8175-181 (2006). [CrossRef]
  11. H. Lochbihler, and R. Depine, "Highly conducting wire gratings in the resonance region," Appl. Opt. 32, 3459-3465 (1993). [CrossRef] [PubMed]
  12. H. Lochbihler," Surface polaritons on gold-wire gratings," Phys. Rev. B 50, 4795 (1994). [CrossRef]
  13. C. O. Chui, A. K. Okyay, and K. C. Saraswat, "Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors," IEEE Photon. Technol. Lett 15, 1585-1587 (2003). [CrossRef]
  14. D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express 20, 7760-7771 (2005) [CrossRef]
  15. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 - 2848 (1999). [CrossRef]
  16. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 0574031-0574034 (2002). [CrossRef]
  17. F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostrucutred metals," Phys. Rev. B. 66, 1554121-155412 (2002). [CrossRef]
  18. A. Barbara, P. Quemerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phy. Rev. B. 66, 1614031-1614034 (2002). [CrossRef]
  19. S. Collin, F. Pardo, R. Teissier, and J. Pelouard, "Horizontal and vertical surface resonances in transmission metallic gratings," J. Opt. A: Pure Appl. Opt. 4, 154-160 (2002). [CrossRef]
  20. M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B. 66, 195105-195116 (2002). [CrossRef]
  21. K. A. M. Scott, S. R. J. Brueck, J. C. Zolper, and D. R. Myers, "Ion implantation enhanced metal-Si-metal photodetectors," IEEE Photon. Technol. Lett. 6, 635-638 (1994). [CrossRef]
  22. S. K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, 2nd Edition (Wiley-Interscience, New York, 1994).
  23. Y. C. Lim and R. A. Moore, "Properties of Alternately Charged Coplanar Parallel Strips by Conformal Mappings," IEEE Trans. on Electron.Devices 15, 173-180 (1968). [CrossRef]
  24. StephenY. Chou and Mark Y. Liu, "Nanoscale Tera-Hertz Metal-Semiconductor-Metal Photodetectors," IEEE J. Quantum. Electron. 28, 2358-2368 (1992). [CrossRef]
  25. S. Y. Chou, M. Y. Liu, and P. B. Fischer, "Tera-hertz GaAs metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width," Appl. Phys. Lett. 61, 477-479 (1992). [CrossRef]
  26. R. F. Pierret, Semiconductor Device Fundamentals 1st ed. (Addison-Wesley, New York, 1996), p. 78.
  27. S. Ramo, "Currents induced by Electron Motion," Proc. IRE 27, 584, (1939). [CrossRef]
  28. MAXIM High-Frequency/Fiber Communications Group, Optical Receiver Performance Evaluation (Maxim Integrated Products, 2003).
  29. S. Alexander, Optical Communication Receiver Design (SPIE-International Society for Optical Engineers, New York, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited