OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 6 — Mar. 20, 2006
  • pp: 2062–2070

Experimental study of high speed polarization-coding quantum key distribution with sifted-key rates over Mbit/s

Xiao Tang, Lijun Ma, Alan Mink, Anastase Nakassis, Hai Xu, Barry Hershman, Joshua C. Bienfang, David Su, Ronald F. Boisvert, Charles W. Clark, and Carl J. Williams  »View Author Affiliations

Optics Express, Vol. 14, Issue 6, pp. 2062-2070 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a quantitative study of various limitations on quantum cryptographic systems operating with sifted-key rates over Mbit/s. The dead time of silicon APDs not only limits the sifted-key rate but also causes correlation between the neighboring key bits. In addition to the well-known count-rate dependent timing jitter in avalanche photo-diode (APD), the faint laser sources, the vertical cavity surface emission lasers (VCSELs) in our system, also induce a significant amount of data-dependent timing jitter. Both the dead time and the data-dependent timing jitter are major limiting factors in designing QKD systems with sifted-key rates beyond Mbit/s.

© 2006 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 11, 2006
Revised Manuscript: March 6, 2006
Manuscript Accepted: March 15, 2006
Published: March 20, 2006

Xiao Tang, Lijun Ma, Alan Mink, Anastase Nakassis, Hai Xu, Barry Hershman, Joshua C. Bienfang, David Su, Ronald F. Boisvert, Charles W. Clark, and Carl J. Williams, "Experimental study of high speed polarization-coding quantum key distribution with sifted-key rates over Mbit/s," Opt. Express 14, 2062-2070 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennet and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, Bangalore, India,1984), pp. 175-179.
  2. C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett. 68, 3121-3124 (1992). [CrossRef] [PubMed]
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  4. J.C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lum D. H. Su, C. W. Clark, "Quantum key distribution with 1.25 Gbps clock synchronization," Opt. Express. 7, 2011-2016 (2004). [CrossRef]
  5. J. G. Rarity, P. R. Tapster and P. M. Gorman, "Secure Free-space key-exchange to 1.9 km and beyond," J. Mod. Opt. 48, 1887-1901 (2001).
  6. C. Elliott, D. Pearson, and G. Troxel, "Quantum cryptography in practice," in SIGCOMM’ 03: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (ACM Press, New York, 2003), pp. 227-238.
  7. D. S. Bethune, M. Navarro, and W. P. Risk, "Enhanced autocompensating quantum cryptography system," Appl. Opt. 41, 1640-1648 (2002). [CrossRef] [PubMed]
  8. J. Breguet, A. Muller, and N. Gisin, "Quantum cryptography with polarized photons in optical fibers, experiment and practical limits," J. of Mod. Opt.,  41, 2405-2412 (1994). [CrossRef]
  9. P. D. Townsend, "Experimental investigation of the performance limits for first telecommunication-window quantum cryptography system," IEEE Photon. Technol. Lett. 10, 1048-1050 (1998). [CrossRef]
  10. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, "A Short Wavelength GigaHertz Clocked Fiber-Optic Quantum Key Distribution System," IEEE J. Quantum Electron. 40, 900-908 (2004). [CrossRef]
  11. X. Tang, L. Ma, A. Mink, A. Nakassis, B. Hershman, J. Bienfang, R. F. Boisvert, C. Clark, and C. Williams, "High Speed Fiber-Based Quantum Key Distribution using Polarization Encoding," in Optics and Photonics 2005: Quantum Communications and Quantum Imaging III, Proc. SPIE 5893, 1A-1-1A-9 (2005)
  12. A. Nakassis, J. Bienfang, and C. Williams, "Expeditious reconciliation for practical quantum key distribution," in Defense and Security Symposium: Quantum Information and Computation II, Proc. SPIE 5436,28-35 (2004). [CrossRef]
  13. D. S. Pearson and C. Elliott, "On the optimal mean photon number for quantum cryptography," Eprint quant-ph/0403065 (2004), http://arxiv.org/fpt/quant-ph/papers/0403/0403064.pdf
  14. J. K. Guenter and J. A. Tatum, "Modulating VCSELs," (Honeywell), http://www.adopco.com/publication/documents/ModulatingVCSELs.pdf.
  15. K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, "Quantum key distribution system clocked at 2 GHz," Opt. Express 13,3015-3020 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited