OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 6 — Mar. 20, 2006
  • pp: 2256–2262

Observation of continuous-wave second-harmonic generation in semiconductor waveguide directional couplers

Po Dong, Jeremy Upham, Aju Jugessur, and Andrew G. Kirk  »View Author Affiliations

Optics Express, Vol. 14, Issue 6, pp. 2256-2262 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the observation of continuous-wave second-harmonic generation in waveguide directional couplers. We employ a GaAs/AlGaAs system and observe four resonance peaks in a ~15nm spectral range, with a maximal conversion efficiency of 1.6%W-1cm-2. This observation is theoretically explained by the coupled-mode theory. This new configuration has the potential to open a new range of applications for nonlinear frequency conversion.

© 2006 Optical Society of America

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

ToC Category:
Nonlinear Optics

Original Manuscript: January 17, 2006
Revised Manuscript: March 14, 2006
Manuscript Accepted: March 14, 2006
Published: March 20, 2006

Po Dong, Jeremy Upham, Aju Jugessur, and Andrew G. Kirk, "Observation of continuous-wave second-harmonic generation in semiconductor waveguide directional couplers," Opt. Express 14, 2256-2262 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, Nonlinear Optics (Academic Press Inc., 2003).
  2. M. M. Fejer, "Nonlinear optical frequency conversion," Phys. Today 47, 25-31 (1994). [CrossRef]
  3. J. P. Van der Ziel, "Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers," Appl. Phys. Lett. 26, 60-61 (1975). [CrossRef]
  4. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, "Phase matching using an isotropic nonlinear optical material," Nature 391, 463-465 (1998). [CrossRef]
  5. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between light waves in a nonlinear dielectric," Phys. Rev. 127, 1918-1939 (1962). [CrossRef]
  6. V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998). [CrossRef]
  7. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation-tuning and tolerance," IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  8. G. L. J. A. Rikken, C. J. E. Seppen, E. G. J. Staring, and A. H. J. Venhuizen, "Efficient modal dispersion phase-matched frequency-doubling in poled polymer waveguides," Appl. Phys. Lett. 62, 2483-2485 (1993). [CrossRef]
  9. P. K. Tien, R. Ulrich, and R. J. Martin, "Optical second harmonic generation in form of coherent Cerenkov radiation from a thin-film waveguide," Appl. Phys. Lett. 17, 447-449 (1970). [CrossRef]
  10. P. Dong, and A. G. Kirk, "Nonlinear frequency conversion in waveguide directional couplers," Phys. Rev. Lett. 93,133901 (2004). [CrossRef] [PubMed]
  11. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, "Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding," Appl. Phys. Lett. 68, 2609-2611 (1996). [CrossRef]
  12. T. Skauli, "Measurement of the nonlinear coefficient of orientation-patterned GaAs and demonstration of highly efficient second-harmonic generation," Opt. Lett. 27, 628-630 (2002). [CrossRef]
  13. K. Moutzouris, S. V. Rao, M. Ebrahimzadeh, A. De Rossi, M. Calligaro, V. Ortiz, and V. Berger, "Second-harmonic generation through optimized modal phase matching in semiconductor waveguides," Appl. Phys. Lett. 83, 620-622 (2003). [CrossRef]
  14. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, "Continuous-wave second harmonic generation in modal phase matched semiconductor waveguides," Appl. Phys. Lett. 84, 2974-2976 (2004). [CrossRef]
  15. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, 1997).
  16. A. A. Maier, "Coupled modes phase matching and synchronous non-linear wave interaction in coupled waveguides," Kvantovaya Elektronika 7, 1596-1598 (1980).
  17. S. I. Bozhevol’nyi, K. S. Buritskii, E. M. Zolotov, and V. Chernykh, Sov. Tech. Phys. Lett. 7, 278 (1981).
  18. X. G. Huang and M. R. Wang, "A novel quasi-phase-matching frequency doubling technique," Opt. Commun. 150, 235-238 (1998). [CrossRef]
  19. G. Assanto, G. Stegeman, M. Sheik-Bahae, and E. V. Stryland, "All-optical switching devices based on large nonlinear phase shifts from second harmonic generation," Appl. Phys. Lett.,  62, 1323-1325 (1993). [CrossRef]
  20. R. Iwanow, R. Schiek, G. I. Stegeman, T. Pertsch, F. Lederer, Y. Min, and W. Sohler, "Observation of discrete quadratic solitons", Phys. Rev. Lett. 93, 113902 (2004). [CrossRef] [PubMed]
  21. Chowdhury, and L. McCaughan, "Continuously phase-matched M-waveguides for second-order nonlinear upconversion," IEEE Photon. Technol. Lett. 12, 486-488 (2000). [CrossRef]
  22. T. Reed, and A. P. Knights, Silicon photonics (John Wiley & Sons Inc., 2004). [CrossRef]
  23. K. Ekert, J. G. Rarity, P. R. Tapster, and G. M. Palma, "Practical quantum cryptography based on 2-photon interferometry," Phys. Rev. Lett. 69, 1293-1296 (1992). [CrossRef] [PubMed]
  24. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, "Experimental quantum teleportation," Nature,  390, 575-579 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited