OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 6 — Mar. 20, 2006
  • pp: 2263–2276

Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format

Konstantin L. Vodopyanov  »View Author Affiliations

Optics Express, Vol. 14, Issue 6, pp. 2263-2276 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (208 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore optical-to-terahertz conversion efficiencies which can be achieved with femto- and picosecond optical pulses in electro-optic crystals with periodically inverted sign of second-order susceptibility. Optimal crystal lengths, pulse durations, pulse formats and focusing are regarded. We show that for sufficiently short (femtosecond) optical pulses, with a pulsewidth much shorter than the inverse terahertz frequency, conversion efficiency does not depend on pulse duration. We also show that by mixing two picosecond pulses (bandwidth-limited or chirped), one can achieve conversion efficiency, which is the same as in the case of femtosecond pulse with the same pulse energy. Additionally, when the group velocity dispersion of optical pulses is small, one can substantially exceed Manley‒Rowe conversion limit due to cascaded processes.

© 2006 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.3090) Physical optics : Infrared, far

ToC Category:
Nonlinear Optics

Original Manuscript: December 6, 2005
Manuscript Accepted: March 8, 2006
Published: March 20, 2006

Konstantin L. Vodopyanov, "Optical generation of narrow-band terahertz packets in periodically inverted electro-optic crystals: conversion efficiency and optimal laser pulse format," Opt. Express 14, 2263-2276 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. 1. T. Yajima, and N. Takeuchi, "Far-infrared difference-frequency generation by picosecond laser pulses," Jpn. J. Appl. Phys. 9, 1361-1371 (1970). [CrossRef]
  2. K. H. Yang, P. L. Richards, and Y. R. Shen, "Generation of far-infrared radiation by picosecond light pulses in LiNbO3," Appl. Phys. Lett. 19, 320-323 (1971). [CrossRef]
  3. L. Xu, X.-C. Zhang, and D. H. Auston, "Terahertz beam generation by femtosecond optical pulses in electro-optic materials," Appl. Phys. Lett. 61, 1784-6 (1992). [CrossRef]
  4. B. Ferguson, and X.-C. Zhang, "Materials for terahertz science and technology," Nat. Mater. 1, 26-33 (2002). [CrossRef]
  5. A. Bonvalet, M. Joffre, J.-L. Martin, and A. Migus, "Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate," Appl. Phys. Lett. 67, 2907-2909 (1995). [CrossRef]
  6. R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, "Broadband phasematched difference frequency mixing of femtoseconds pulses in GaSe: Experiment and theory," Appl. Phys. Lett. 75, 1060-1062 (1999). [CrossRef]
  7. PeterH. Siegel, "Terahertz technology," IEEE Transactions on Microwave Theory and Techniques 50, 910-28 (2002). [CrossRef]
  8. T. J. Carrig, G. Rodriguez, T. S. Clement, and A. J. Taylor, "Scaling of terahertz radiation via optical rectification in electro-optic crystals," Appl. Phys. Lett. 66, 121-3 (1995). [CrossRef]
  9. A. G. Stepanov, J. Kuhl, I. Z. Kozma, E. Riedle, G. Almási and J. Hebling, "Scaling up the energy of THz pulses created by optical rectification," Opt. Express 13, 5762 - 68 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-15-5762 [CrossRef] [PubMed]
  10. Y.-S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 76, 2505-2507 (2000). [CrossRef]
  11. K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, V. G. Kozlov, and Y.-S. Lee, "Terahertz-wave generation in periodically-inverted GaAs," Conference on Lasers and Electro Optics, May 2005, Baltimore MD, Technical Digest (Optical Society of America, Washington DC, 2005), paper CWM1.
  12. A. Yariv, Quantum Electronics, (Wiley, New York, 3rd edition, 1988), Chap. 16.
  13. A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-23 (1996). [CrossRef]
  14. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, (Springer, Berlin, 1997).
  15. W. J. Moore, and R. T. Holm, "Infrared dielectric constant of gallium arsenide," J. Appl. Phys. 80, 6939-6942 (1996). [CrossRef]
  16. D. Grischkovsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  17. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, and M. M. Fejer, "Determination of GaAs refractive index and its temperature dependence, with application to quasi-phasematched nonlinear optics," J. of Appl. Phys. 94, 6447-6455 (2003). [CrossRef]
  18. G. D. Boyd, D. A. Kleinman, "Parametric interaction of focussed gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968). [CrossRef]
  19. R. L. Byer, and R. L. Herbst, "Parametric oscillation and mixing," in Topics in Applied Physics: Nonlinear Infrared Generation, ed. by Y.R. Shen (Springer, Berlin, 1977), Vol. 16, p. 81-137. [CrossRef]
  20. A. S. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, "Generation of tunable narrow-band THz radiation from large aperture photoconducting antennas," Appl. Phys. Lett. 64, 137 (1994). [CrossRef]
  21. A. E. Siegman, Lasers, (University Science Books, Mill Valley, 1986), Chap. 9.
  22. J. R. Morris, and Y. R. Shen, "Theory of far infrared generation by optical mixing," Phys. Rev. A 15, 1143-56 (1977). [CrossRef]
  23. Y. R. Shen, "Far-infrared generation by optical mixing," Prog. Quantum Electron. 4, 207-232 (1976). [CrossRef]
  24. S. Guha, "Focusing dependence of the efficiency of a singly resonant optical parametric oscillator," Appl. Phys. B 66, 663-675 (1998). [CrossRef]
  25. M. Cronin-Golomb, "Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production," Opt. Lett. 29, 2046-2048 (2004). [CrossRef] [PubMed]
  26. T. K. Gustafson, J.-P.E. Taran, P. L. Kelley, and R. Y. Chiao, "Self-modulation of picosecond pulses in electro-optic crystals," Opt. Commun. 2, 17-21 (1970). [CrossRef]
  27. J.-P. Caumes, L. Videau, C. Touyez, E. Freysz, "Kerr-line nonlinearity induced via terahertz generation and the electro-optic effect in zinc blende crystals," Phys. Rev. Lett. 89, 047401 (2002). [CrossRef]
  28. Y. J. Ding, "Efficient generation of high-power quasi-single-cycle terahertz pulses from a single infrared beam in a second-order nonlinear medium," Opt. Lett. 29, 2650-52 (2004). [CrossRef] [PubMed]
  29. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, and E. W. Van Stryland, "Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe," J. Opt. Soc. Am. B 9, 405-414 (1992). [CrossRef]
  30. B. S. Wherrett, "Scaling rules for multiphoton interband absorption in semiconductors," J. Opt. Soc. Am. B 1, 67-72 (1984). [CrossRef]
  31. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Dispersion of bound electronic nonlinear refraction in solids," IEEE J. Quantum Electron. 27, 1296-1309 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1391 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited