OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 6 — Mar. 20, 2006
  • pp: 2289–2299

A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies

Guoqiang Cui, J. M. Hannigan, R. Loeckenhoff, F. M. Matinaga, M. G. Raymer, S. Bhongale, M. Holland, S. Mosor, S. Chatterjee, H. M. Gibbs, and G. Khitrova  »View Author Affiliations


Optics Express, Vol. 14, Issue 6, pp. 2289-2299 (2006)
http://dx.doi.org/10.1364/OE.14.002289


View Full Text Article

Enhanced HTML    Acrobat PDF (495 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a novel hemispherical micro-cavity that is comprised of a planar integrated semiconductor distributed Bragg reflector (DBR) mirror, and an external, concave micro-mirror having a radius of curvature 50μm. The integrated DBR mirror containing quantum dots (QD), is designed to locate the QDs at an antinode of the field in order to maximize the interaction between the QD and cavity. The concave micro-mirror, with high-reflectivity over a large solid-angle, creates a diffraction-limited (sub-micron) mode-waist at the planar mirror, leading to a large coupling constant between the cavity mode and QD. The half-monolithic design gives more spatial and spectral tuning abilities, relatively to fully monolithic structures. This unique micro-cavity design will potentially enable us to both reach the cavity quantum electrodynamics (QED) strong coupling regime and realize the deterministic generation of single photons on demand.

© 2006 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: January 6, 2006
Revised Manuscript: March 6, 2006
Manuscript Accepted: March 7, 2006
Published: March 20, 2006

Citation
Guoqiang Cui, J. M. Hannigan, R. Loeckenhoff, F. M. Matinaga, M. G. Raymer, S. Bhongale, M. Holland, S. Mosor, S. Chatterjee, H. M. Gibbs, and G. Khitrova, "A hemispherical, high-solid-angle optical micro-cavity for cavity-QED studies," Opt. Express 14, 2289-2299 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-6-2289


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies (Abstract)," Phys. Rev. 69, 681 (1946).
  2. R. G. Hulet, E. S. Hilfer, and D. Kleppner, "Inhibited spontaneous emission by a Rydberg atom," Phys. Rev. Lett. 55, 2137 (1985). [CrossRef] [PubMed]
  3. F. De Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, "Anomalous spontaneous emission time in a microscopic optical cavity," Phys. Rev. Lett. 59, 2955 (1987). [CrossRef] [PubMed]
  4. D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, "Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator," Phys. Rev. Lett. 58, 1320 (1987). [CrossRef] [PubMed]
  5. D. J. Heinzen and M. S. Feld, "Vacuum radiative level shift and spontaneous-emission linewidth of an atom in an optical resonator," Phys. Rev. Lett. 59, 2623 (1987). [CrossRef] [PubMed]
  6. S. E. Morin, C. C. Yu, and T.W. Mossberg, "Strong atom-cavity coupling over large volumes and the observation of subnatural intracavity atomic linewidths," Phys. Rev. Lett. 73, 1489 (1994). [CrossRef] [PubMed]
  7. Y. Yamamoto and R. E. Slusher, "Optical processes in microcavities," Phys. Today 46, 66 (1993). [CrossRef]
  8. P. R. Rice and H. J. Carmichael, "Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy," Phys. Rev. A 50, 4318 (1994). [CrossRef] [PubMed]
  9. H. J. Kimble, "Structure and dynamics in cavity quantum electrodynamics," in Cavity Quantum Electrodynamics, P. Berman ed. (Academic Press, San Diego, 1994), pp. 203-266.
  10. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, "Measurement of conditional phase shifts for quantum logic," Phys. Rev. Lett. 75, 4710 (1995). [CrossRef] [PubMed]
  11. D. Meschede, H. Walther, and G. Müller, "One-atom maser," Phys. Rev. Lett. 54, 551 (1985). [CrossRef] [PubMed]
  12. M. Brune, J. M. Raimond, P. Goy, L. Davidovich, and S. Haroche, "Realization of a two-photon maser oscillator," Phys. Rev. Lett. 59, 1899 (1987). [CrossRef] [PubMed]
  13. G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and H. J. Kimble, "Optical bistability and photon statistics in cavity quantum electrodynamics," Phys. Rev. Lett. 67, 1727 (1991). [CrossRef] [PubMed]
  14. S. Haroche and D. Kleppner, "Cavity quantum electrodynamics," Physics Today 42, 24 (1989). [CrossRef]
  15. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, "Nonlinear optics of normal-mode-coupling semiconductor microcavities," Rev. Mod. Phys. 71, 1591 (1999). [CrossRef]
  16. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197 (2004). [CrossRef] [PubMed]
  17. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200 (2004). [CrossRef] [PubMed]
  18. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. G´erard, and J. Bloch, "Exciton-photon strongcoupling regime for a single quantum dot embedded in a microcavity," Phys. Rev. Lett. 95, 067401 (2005). [CrossRef] [PubMed]
  19. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, "Electrically driven single-photon source," Science 295, 102 (2002). [CrossRef]
  20. X. Fan, T. Takagahara, J. E. Cunningham, and H. Wang, "Pure dephasing induced by exciton-phonon interactions in narrow GaAs quantum wells," Solid State Commun. 108, 857 (1998). [CrossRef]
  21. M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.6Ga0.4As/GaAs self-assembled quantum dots," Phys. Rev. B 65, 041308 (2002). [CrossRef]
  22. The coating was made by Spectrum Thin Films Company, New York.
  23. M. Trupke, E. A. Hinds, S. Eriksson, and E. A. Curtis, "Microfabricated high-finesse optical cavity with open access and small volume," arXiv:quant-ph/0506234 (2005).
  24. A. E. Siegman, in Lasers, (University Science Books, Mill Valley, CA, 1986).
  25. P. D. Drummond, "Optical bistability in a radially varying mode," IEEE J. Quantum Electron. QE- 17, 301 (1981). [CrossRef]
  26. M. Born and E. Wolf, in Principles of Optics (7th Ed.), (Cambridge University Press, New York, 1999) pp. 338-340.
  27. R. P. Stanley, R. Houdre, U. Oesterle, M. Gailhanou, and M. Ilegems, "Ultrahigh finesse microcavity with distributed Bragg reflectors," Appl. Phys. Lett. 65, 1883 (1994). [CrossRef]
  28. A. Zrenner, L. V. Butov, M. Hagn, G. Abstreiter, G. Bohm, and G. Weimann, "Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures," Phys. Rev. Lett. 72, 3382 (1994). [CrossRef] [PubMed]
  29. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, "Fine structure splitting in the optical spectra of single GaAs quantum dots," Phys. Rev. Lett. 76, 3005 (1996). [CrossRef] [PubMed]
  30. D. H. Foster and J. U. Nöckel, "Methods for 3-d vector microcavity problems involving a planar dielectric mirror," Opt. Commun. 234, 351 (2004). [CrossRef]
  31. M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, "Three-dimensionally confined modes in micropost microcavities: quality factors and Purcell factors," IEEE J. Quantum Electron. 38, 170 (2002). [CrossRef]
  32. S. Bhongale, M. Holland, and M. G. Raymer, "Quantum dot quantum computing: non-paraxial eigenmodes of microcavity," presented at the APS 34th Meeting of the Division of AMO Physics, Boulder, CO, 20-24 May 2003.
  33. J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808 (2002). [CrossRef]
  34. L. C. Andreani, G. Panzarini, and J. M. G´erard, "Strong-coupling regime for quantum boxes in pillar microcavities: theory," Phys. Rev. B 60, 13276 (1999). [CrossRef]
  35. T. Pellizzari, S. Gardiner, J. Cirac, and P. Zoller, "Decoherence, continous obervation, and quantum computing: a cavity QED model," Phys. Rev. Lett. 75, 3788 (1995). [CrossRef] [PubMed]
  36. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum state transfer and entanglement distribution among distant nodes in a quantum network," Phys. Rev. Lett. 78, 3221 (1997). [CrossRef]
  37. A. Kuhn, M. Hennrich, and G. Rempe, "Deterministic single-photon source for distributed quantum networking," Phys. Rev. Lett. 89, 067901 (2002). [CrossRef] [PubMed]
  38. A. Kiraz, C. Reese, B. Gayral, L. Zhang, W. V. Schoenfeld, B. D. Gerardot, P. M. Petroff, E. L. Hu, and A. Imamoglu, "Cavity-quantum electrodynamics with quantum dots," J. Opt. B: Quantum Semiclass. Opt. 5, 129 (2003). [CrossRef]
  39. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, "Deterministic generation of single photons from one atom trapped in a cavity," Science 303, 1992 (2004). [CrossRef] [PubMed]
  40. T. M. Stace, G. J. Milburn, and C. H. W. Barnes, "Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity," Phys. Rev. B 67, 085317 (2003). [CrossRef]
  41. D. Bouwmeester, A. Ekert, and A. Zeilinger, in The Physics of Quantum Information (Springer, Berlin, 2000).
  42. C. H. Bennett, G. Brassard, and A. Eckert, "Quantum cryptography," Sci. Am. 267, 50 (1992). [CrossRef]
  43. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New J. Phys. 4, (2002). [CrossRef]
  44. K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. B¨ohm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P.Walther, H. Weier, H. Weinfurter, and A. Zeilinger, "Distributing entanglement and single photons through an intra-city, free-space quantum channel," Opt. Express 13, 202 (2005). [CrossRef] [PubMed]
  45. C. Z. Peng, T. Yang, X. H. Bao J. Zhang, X. M. Jin, F. Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan, "Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication," Phys. Rev. Lett. 94, 150501 (2005). [CrossRef] [PubMed]
  46. E. Pazy, E. Biolatti, T. Calarco, I. D’Amico, P. Zanardi, F. Rossi, and P. Zoller, "Spin-based optical quantum computation vis Pauli blocking in semiconductor quantum dots," Europhys. Lett. 62, 175 (2003). [CrossRef]
  47. H. Mabuchi and A. C. Doherty, "Cavity quantum electrodynamics: coherence in context," Science 298, 1372 (2002). [CrossRef] [PubMed]
  48. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, "Quantum information processing using quantum dots spins and cavity QED," Phys. Rev. Lett. 83, 4204 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited