OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 6 — Mar. 20, 2006
  • pp: 2323–2334

Bilayer Al wire-grids as broadband and high-performance polarizers

Yasin Ekinci, Harun H. Solak, Christian David, and Hans Sigg  »View Author Affiliations

Optics Express, Vol. 14, Issue 6, pp. 2323-2334 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2345 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have fabricated, characterized and theoretically analyzed the performance of bilayer (or stacked) metallic wire-grids. The samples with 100 nm period were fabricated with extreme-ultraviolet interference lithography. Transmission efficiency over 50% and extinction ratios higher than 40 dB were measured in the visible range with these devices. Simulations using a finite-difference time-domain algorithm are in agreement with the experimental results and show that the transmission spectra are governed by Fabry-Perot interference and near-field coupling between the two layers of the structure. The simple fabrication method involves only a single lithographic step without any etching and guarantees precise alignment and separation of the two wire-grids with respect to each other.

© 2006 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(120.7000) Instrumentation, measurement, and metrology : Transmission
(160.3900) Materials : Metals
(230.1360) Optical devices : Beam splitters
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization

ToC Category:
Optical Devices

Original Manuscript: January 4, 2006
Revised Manuscript: March 2, 2006
Manuscript Accepted: March 14, 2006
Published: March 20, 2006

Yasin Ekinci, Harun H. Solak, Christian David, and Hans Sigg, "Bilayer Al wire-grids as broadband and high-performance polarizers," Opt. Express 14, 2323-2334 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Hecht, Optics, 4th Edition, Addison Wesley, 2002, page 333.
  2. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, "Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography," App. Phys. Lett. 77, 927 (2000). [CrossRef]
  3. S-W. Ahn, K-D. Lee, J-S. Kim, S. H. Kim, J-D. Park, S-H. Lee, and P-W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874 (2005). [CrossRef]
  4. G. J. Sonek, D. K. Wagner, and J. M. Ballantyne, "Ultraviolet grating polarizers," J. Vac. Sci. Techol. 19, 921 (1981). [CrossRef]
  5. J. J. Wang, W. Zhang, Z. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, " High-performance nanowire-grid polarizers," Opt. Lett. 30, 195 (2005). [CrossRef] [PubMed]
  6. H. Tamada, T. Doumiki, T. Yamaguchi, and S. Matsumoto, "Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band," Opt. Lett. 22, 419 (1997). [CrossRef] [PubMed]
  7. D. Kim, "Polarization characteristics of a wire-grid polarizer in a rotating platform," Appl. Opt. 44, 1366 (2005). [CrossRef] [PubMed]
  8. B. Schnabel, E-B. Kley, F. Wyrowski, "Study on polarizing visible light by subwavelength-period metal stripe gratings," Opt. Eng. 38, 220 (1999). [CrossRef]
  9. T. Doumuki, H. Tamada, "An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode," Appl. Phys. Lett. 71, 686 (1997). [CrossRef]
  10. J. J. Wang, P. Sciortino, J. Deng, X. Deng, F. Liu, R. Varghese, A. Nikolov, and A. Graham, "Monolithically integrated isolators based on nanowire-grid polarizers," IEEE Photonics Technol. Lett. 17, 396 (2005). [CrossRef]
  11. L. Zhou and W. Liu, "Broadband polarizing beam splitter with an embedded metal-wire nanograting," Opt. Lett. 30, 1434 (2005). [CrossRef] [PubMed]
  12. L. L. Soares and L. Cescato, "Metallized photoresist grating as a polarizing beam splitters," Appl. Opt. 40, 5906 (2001). [CrossRef]
  13. M. Xu, H. P. Urbach, D. K. G. de Boer, and H. J. Cornelissen, " Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon," Opt. Express 13, 2303 (2005). [CrossRef] [PubMed]
  14. B. Bai, L. Li, and L. Zeng, "Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes," Opt. Lett. 30,2360 (2005). [CrossRef] [PubMed]
  15. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim and P.F. Nealey, " Sub-50 nm period patterns with EUV interference lithography," Microelectron. Eng. 67-68, 56 (2003). [CrossRef]
  16. D. Y. Smith, "Optical properties of metallic aluminum," in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985).
  17. Peng Liu, EM  Explorer, http://www.emexplorer.net.
  18. A. Taflove, S. C. Hagness, Computational Electrodynamics: The finite-difference time-domain method, 3rd Edition, Artech House, 2005.
  19. J. D. Jackson, Classical Electrodynamics, (John Wiley & Sons, Inc., 1975).
  20. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 (1999). [CrossRef]
  21. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through a periodic array of slits in a thick metallic film," Opt. Express 13, 4485 (2005). [CrossRef] [PubMed]
  22. T. A. Savas, M. L. Schattenburg, J. L. Carter, and H. I. Smith, "Large-area achromatic interferometric lithography for 100 nm period gratings and grids," J. Vac. Sci. Technol. B 14, 4167 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited