OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 6 — Mar. 20, 2006
  • pp: 2372–2379

Enhancement of band gap emission stimulated by defect loss

H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen  »View Author Affiliations


Optics Express, Vol. 14, Issue 6, pp. 2372-2379 (2006)
http://dx.doi.org/10.1364/OE.14.002372


View Full Text Article

Enhanced HTML    Acrobat PDF (409 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Defect radiation has been always considered as the most important loss for an emitter based on band gap emission. Here, we propose a novel approach which goes against this conventional wisdom. Based on the resonance effect between the surface plasmon of metal nanoparticles and defect emission, it is possible to convert the useless defect radiation to the useful excitonic emission with a giant enhancement factor. Through the transfer of the energetic electrons excited by surface plasmon from metal nanoparticles to the conduction band of the emitter, the band gap emission can be greatly enhanced, while the defect emission can be suppressed to noise level.

© 2006 Optical Society of America

OCIS Codes
(240.6490) Optics at surfaces : Spectroscopy, surface
(240.6680) Optics at surfaces : Surface plasmons
(260.2510) Physical optics : Fluorescence

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 27, 2006
Manuscript Accepted: March 1, 2006
Published: March 20, 2006

Citation
H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, Y. F. Chen, and K. T. Tsen, "Enhancement of band gap emission stimulated by defect loss," Opt. Express 14, 2372-2379 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-6-2372


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Next-generation lighting initiative. http:// lighting.sandia.gov.
  2. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, ‘‘Single-crystal gallium nitride nanotubes,’’Nature 422, 599-602 (2003). [CrossRef] [PubMed]
  3. H. J. Queisser and E. E. Haller, ‘‘Defects in semiconductors: Some Fatal, Some Vital,’’Science 281, 945-950 (1998). [CrossRef] [PubMed]
  4. W. Han, S. Fan, Q. Li, and Y. Hu, ‘‘Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,’’Science 277, 1287-1289 (1997). [CrossRef]
  5. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, ‘‘Catalytic growth of zinc oxide nanowires by vapor transport,’’Adv. Mater. 13, 113-116 (2001). [CrossRef]
  6. N. E. Hsu, W. K. Hung, and Y. F. Chen, ‘‘Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods,’’J. Appl. Phys. 96, 4671-4673 (2004). [CrossRef]
  7. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, ‘‘Mechanisms behind green photoluminescence in ZnO phosphor powders,’’J. Appl. Phys. 79, 7983-7990 (1996). [CrossRef]
  8. A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, ‘‘The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,’’J. Lumin. 87-89, 454-456 (2000). [CrossRef]
  9. C. C. Lin, H. P. Chen, H. C. Liao, and S. Y. Chen, ‘‘Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates,’’Appl. Phys. Lett. 86, 183103 (2005). [CrossRef]
  10. N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, ‘‘Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO,’’Appl. Phys. Lett. 80, 2869-2871 (2002). [CrossRef]
  11. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, ‘‘Drastic reduction of plasmon damping in gold nanorods,’’Phys. Rev. Lett. 88, 077402(2002). [CrossRef] [PubMed]
  12. K. T. Tsen, Ultrafast physical process in semiconductors, (Academic Press, New York, 2001), 109. [CrossRef]
  13. V. I. Klimov and D. W. Mcbranch, ‘‘Femtosecond 1P-to-1S Electron Relaxation in Strongly Confined Semiconductor Nanocrystals,’’Phys. Rev, Lett. 80, 4028-4031 (1998). [CrossRef]
  14. W. L. Barnes, A. Dereux, and T. W. Ebbesen, ‘‘Surface plasmon subwavelength optics,’’Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  15. S. A. Maier and H. A. Atwater, ‘‘Plasmons: Localization and guiding of electromagnetic energy in metal/dielectric structure,’’J. Appl. Phys. 98, 011101(2005). [CrossRef]
  16. P. V. Kamat and B. Shanghavi, ‘‘Interpretation electron transfer in metal/semiconductor composites. Picosecond Dynamics of CdS-capped gold nanoclusters,’’Phys. Chem. B 101, 7675-7679 (1997). [CrossRef]
  17. P. V. Kamat, ‘‘Photoinduced transformations in semiconductor-metal nanocomposite Assemblies,’’Pure Appl. Chem. 74, 1693-1706 (2002). [CrossRef]
  18. A. Wood, M. Giersig, and P. Mulvaney, ‘‘Fermi level equilibration in quantum dot-metal nanojunctions,’’J. Phys. Chem, 8810(2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited