OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 6 — Mar. 20, 2006
  • pp: 2404–2412

Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single-mode operation

Tadashi Murao, Kunimasa Saitoh, and Masanori Koshiba  »View Author Affiliations

Optics Express, Vol. 14, Issue 6, pp. 2404-2412 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (539 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate photonic band-gap (PBG) profiles of a modified honeycomb lattice structure and we identify the structural parameters that possess the largest band-gap. By incorporating the identified profile into the cladding, the wavelength dependence of the dispersion properties and confinement losses of air-guiding modified honeycomb PBG fibers (PBGFs) is investigated through a full-vector modal solver based on finite element method. In particular, we find that broadband effectively single-mode operation from 1450 nm to 1850 nm can be achieved using a modified honeycomb PBGF with a defected core realized by removing 7 air holes.

© 2006 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode

ToC Category:
Photonic Crystal Fibers

Original Manuscript: January 23, 2006
Revised Manuscript: March 2, 2006
Manuscript Accepted: March 9, 2006
Published: March 20, 2006

Tadashi Murao, Kunimasa Saitoh, and Masanori Koshiba, "Design of air-guiding modified honeycomb photonic band-gap fibers for effectively singlemode operation," Opt. Express 14, 2404-2412 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Birks, P. J. Roberts, P. S. J. Russell, D. M. Atkin, and T. J. Shepherd, "Full 2-D photonic bandgaps in silica/air structures," Electron. Lett. 31, 1941-1943 (1995). [CrossRef]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  3. J. Broeng, S. E. Barkou, T. Sφndergaard, and A. Bjarklev, "Analysis of air-guiding photonic bandgap fibers," Opt. Lett. 25, 96-98 (2000). [CrossRef]
  4. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003). [CrossRef] [PubMed]
  5. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11,3100-3109 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3100. [CrossRef] [PubMed]
  6. K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12,394-400 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394. [CrossRef] [PubMed]
  7. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004). [CrossRef]
  8. M. Yan and P. Shum, "Air guiding with honeycomb photonic bandgap fiber," IEEE Photon. Technol. Lett. 17, 64-66 (2005). [CrossRef]
  9. M. Yan, P. Shum, and J. Hu, "Design of air-guiding honeycomb photonic bandgap fiber," Opt. Lett. 30, 465-467 (2005). [CrossRef] [PubMed]
  10. J. Broeng, S. E. Barkou, A. Bjarklev, J. C. Knight, T. A. Birks, and P. S. J. Russell, "Highly increased photonic band gaps in silica/air structures," Opt. Commun. 156, 240-244 (1998). [CrossRef]
  11. Y. Li, C. Wang, M. Hu, B. Liu, X. Sun, and L. Chai, "Honeycomb photonic bandgap fibers with and without interstitial air holes," Opt. Express 13,6856-6863 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-6856. [CrossRef] [PubMed]
  12. T. Haas, S. Belau, and T. Doll, "Realistic monomode air-core honeycomb photonic bandgap fiber with pockets," J. Lightwave Technol. 23, 2702-2706 (2005). [CrossRef]
  13. M. Chen and R. Yu, "Analysis of photonic bandgaps in modified honeycomb structures," IEEE Photon. Technol. Lett. 16, 819-821 (2004). [CrossRef]
  14. S. Selleri, L. Vincetti, F. Poli, A. Cucinotta, and M. Foroni, "Air-guiding photonic crystal fibers with modified honeycomb lattice," in Proceedings of 2005 IEEE/LEOS Workshop on Fibers and Optical Passive Components (WFOPC), 20-25 (2005).
  15. L. Vincetti, F. Poli, and S. Selleri, "Confinement loss and nonlinearity analysis of air-guiding modified honeycomb photonic bandgap fibers," IEEE Photon. Technol. Lett. 18, 508-510 (2006). [CrossRef]
  16. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited