OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 6 — Mar. 20, 2006
  • pp: 2429–2439

Enhancement of unidirectional transmission through the coupling of nonlinear photonic crystal defects

Xu-Sheng Lin, Wei-Qing Wu, Hui Zhou, Kai-Feng Zhou, and Sheng Lan  »View Author Affiliations


Optics Express, Vol. 14, Issue 6, pp. 2429-2439 (2006)
http://dx.doi.org/10.1364/OE.14.002429


View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the unidirectional transmission behavior of coupled photonic crystal defects with nonlinearity by using the coupled mode theory, focusing on how to enhance the transmission contrast. Although the unidirectional transmission originates from the asymmetric configuration and nonlinear property of the structure, it is revealed that the maximum transmission contrast depends mainly on two linear factors. For two coupled defects, they are the highest order of the frequency detuning appearing in the transmission formula and the frequency splitting due to the coupling. Our analyses are supported by the numerical simulations based on the finite-difference time-domain technique. An enhancement of the maximum transmission contrast by an order of magnitude is achieved in the structure consisting of two coupled defects.

© 2006 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Photonic Crystals

History
Original Manuscript: January 20, 2006
Revised Manuscript: March 6, 2006
Manuscript Accepted: March 6, 2006
Published: March 20, 2006

Citation
Xu-Sheng Lin, Wei-Qing Wu, Hui Zhou, Kai-Feng Zhou, and Sheng Lan, "Enhancement of unidirectional transmission through the coupling of nonlinear photonic crystal defects," Opt. Express 14, 2429-2439 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-6-2429


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity," Phys. Rev. B 62,7683-7686 (2000). [CrossRef]
  2. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66,055601 (2002). [CrossRef]
  3. S. Mingaleev and Y. Kivshar, "Nonlinear transmission and light localization in photonic crystal waveguides," J. Opt. Soc. Am. B 19,2241-2249 (2002). [CrossRef]
  4. M. Soljacic, C. Luo, and J. D. Joannopoulos, "Nonlinear photonic crystal microdevices for optical integration," Opt. Lett. 28,637-639 (2003). [CrossRef] [PubMed]
  5. M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83,2739-2741 (2003). [CrossRef]
  6. M. F. Yanik, H. Altug, J. Vuckovic, and S. Fan, "Submicrometer all-optical digital memory and integration of nanoscale photonic devices without isolators," J. Lightwave Technol. 22,2316-2322 (2004). [CrossRef]
  7. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
  8. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "The photonic band edge optical diode," J. Appl. Phys. 76,2023-2026 (1994). [CrossRef]
  9. K. Gallo and G. Assanto, "All-optical diode in a periodically poled lithium niobate waveguide," Appl. Phys. Lett. 79,314-316 (2001). [CrossRef]
  10. S. Pereira, P. Chak, J. E. Sipe, L. Tkeshelashvili, and K. Busch, "All-optical diode in an asymmetrically apodized Kerr nonlinear microresonator system," Photonics and Nanostructure-Fundamentals and Applications 2,181-190 (2004). [CrossRef]
  11. M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, "Bistable diode action in left-handed periodic structures," Phys. Rev. E 71,037602 (2005). [CrossRef]
  12. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawa, and H. Takezoe, "Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions," Nature Materials 4,383-387 (2005). [CrossRef] [PubMed]
  13. X. S. Lin and S. Lan, "Unidirectional transmission in asymmetrically confined photonic crystal defects with Kerr nonlinearity," Chin. Phys. Lett. 22, 2847-2850 (2005). [CrossRef]
  14. S. Lan, X. W. Chen, J. D. Chen, and X. S. Lin, "Physical origin of the ultrafast response of nonlinear photonic crystal atoms to the excitation of ultrashort pulses," Phys. Rev. B 71,125122 (2005). [CrossRef]
  15. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, "Theoretical analysis of channel drop tunneling processes," Phys. Rev. B 59,15882-15892 (1999). [CrossRef]
  16. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, "Scattering-theory analysis of waveguide-resonator coupling," Phys. Rev. E 62,7389-7404 (2000). [CrossRef]
  17. Y. Akahane, T. Asano, H. Takano, B.-S. Song, Y. Takana, and S. Noda, "Two-dimensional photonic-crystal-slab channel-drop filter with flat-top response," Opt. Express 13,2512-2530 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2512. [CrossRef] [PubMed]
  18. C. Jin, S. Fan, S. Han, and D. Zhang, "Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration," IEEE J. Quantum Electron. 39,160-165 (2003). [CrossRef]
  19. B. Maes, P. Bienstman, and R. Baets, "Switching in coupled nonlinear photonic-crystal resonators," J. Opt. Soc. Am. B 22,1778-1784 (2005). [CrossRef]
  20. X. S. Lin, X. W. Chen, and S. Lan, "Investigation and modification of coupling of photonic crystal defects," Chin. Phys. Lett. 22, 1698-1701 (2005). [CrossRef]
  21. M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81,1163-1165 (2002). [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, Norwood, MA, 2000). In this paper, a commercial software developed by Rsoft Design Group (http://www.rsoftdesign.com) is used for nonlinear FDTD simulation.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited