OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 6 — Mar. 20, 2006
  • pp: 2459–2472

Electromagnetic simulation of quantum well structures

Shouyuan Shi, Ge Jin, and Dennis W. Prather  »View Author Affiliations

Optics Express, Vol. 14, Issue 6, pp. 2459-2472 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an auxiliary differential equation Finite-difference Time-domain (ADE-FDTD) approach to numerically model the wave propagation within a gain or absorbing medium such as quantum well structures. Start from traditional quantum electronics theory, the macroscopic susceptibility of the semiconductor is derived and expressed by a multiple-Lorentz-like model based on Prony’s method. With the auxiliary differential equation method each Lorentz-like model can be simulated in the time domain and the induced polarization is then determined by summing all the models. By incorporating the induced polarization into the time-domain Maxwell’s equations, electromagnetic wave propagation in the quantum well medium can be accurately modeled using the FDTD method.

© 2006 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Physical Optics

Original Manuscript: October 26, 2005
Revised Manuscript: March 1, 2006
Manuscript Accepted: March 8, 2006
Published: March 20, 2006

Shouyuan Shi, Ge Jin, and Dennis W. Prather, "Electromagnetic simulation of quantum well structures," Opt. Express 14, 2459-2472 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. P. Sardesai and A. P. Weiner, "Nonlinear fiber-optic receiver for ultra short pulse code division multiple access communications," IEEE Electron. Lett. 33, 610-611 (1997). [CrossRef]
  2. C. A. Kapetanakos, B. Hafizi, H. M. Milehberg, P. Sprangle, R. F. Hubbard, and A. Ting, "Generation of high-average-power ultrabroad-band infrared pulses," IEEE J. Quantum Electron. 35, 565-576 (1999). [CrossRef]
  3. L. E. M. Brackenbury, "Multiplexer as a universal computing element for electro-optic logic systems," IEEE Proc. J. Optoelectron. 137, 305-310 (1990). [CrossRef]
  4. A. S. Nagra and R. A. York, "FDTD analysis of wave propagation in nonlinear absorbing and gain media," IEEE Tran.Antennas Propag. 46, 334-340 (1998). [CrossRef]
  5. R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, "Ultrafast pulse interactions with two-level atoms," Phys. Rev. A 52, 3082-3094 (1995). [CrossRef] [PubMed]
  6. 6. M. Sargent, M. O. Scully, and W. E. lamb, Laser Physics (Addison-Wesley, Reading, MA, 1974).
  7. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
  8. F. B. Hildebrand, Introduction to Numerical Analysis (Dover, New York, 1974).
  9. D. Kasemset, C. S. Hong, N. B. Patel, and P. D. Dapkus, "Graded barrier single quantum well lasers-theory and experiment," IEEE J. Quantum Electron. 19, 1025-1030 (1983). [CrossRef]
  10. R. Dingle and I. Festkorperprobleme, Advances in solid state physics (Braunschweig, Pergamon-Vieweg).
  11. P. S. Zory, "Quantum Well Lasers," (Academic Press INC, CA, 1993).
  12. N. K. Dutta, "Calculated threshold current of GaAs quantum well lasers," J. Appl. Phy. 53, 7211-7214 (1983). [CrossRef]
  13. R. J. Luebbers and F. Hunsberger, "FDTD for Nth-order dispersive media," IEEE Trans. Antennas Propag. 40, 1279-1301 (1992). [CrossRef]
  14. D. F. Kelley and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag. 44, 792-797 (1996). [CrossRef]
  15. D. M. Sullivan, "Frequency-dependent FDTD methods using Z transforms," IEEE Trans. Antennas Propag. 40, 1223-1230 (1992). [CrossRef]
  16. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185--200 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited