OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2573–2582

High reflectivity air-bridge subwavelength grating reflector and Fabry-Perot cavity in AlGaAs/GaAs

Eric Bisaillon, Dawn Tan, Behnam Faraji, Andrew G. Kirk, Lukas Chrowstowski, and David V. Plant  »View Author Affiliations


Optics Express, Vol. 14, Issue 7, pp. 2573-2582 (2006)
http://dx.doi.org/10.1364/OE.14.002573


View Full Text Article

Enhanced HTML    Acrobat PDF (510 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel air-bridge subwavelength grating reflector with very high reflectivity be used as a top mirror in a VCSEL structure. We explain the design method, model the structure using both RCWA and FDTD, and predict the characteristics of a Fabry-Perot structure built with this reflector. We describe the fabrication of the suspended grating.

© 2006 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(140.0140) Lasers and laser optics : Lasers and laser optics

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 31, 2006
Revised Manuscript: March 24, 2006
Manuscript Accepted: March 25, 2006
Published: April 3, 2006

Citation
Eric Bisaillon, Dawn Tan, Behnam Faraji, Andrew Kirk, Lukas Chrowstowski, and David V. Plant, "High reflectivity air-bridge subwavelength grating reflector and Fabry-Perot cavity in AlGaAs/GaAs," Opt. Express 14, 2573-2582 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2573


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kikuta, Y. Ohira, and K. Iwata, "Achromatic quarter-wave plates using the dispersion of form birefringence," Appl. Opt. 36, 1566 (1997). [CrossRef] [PubMed]
  2. R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Cheng, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, "Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter," J. Opt. Soc. Am. A 14, 1627 (1997). [CrossRef]
  3. W. Nakagawa, and Y. Fainman, "Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures," IEEE J. Sel. Top. Quantum Electron.,  10, 478 (2004). [CrossRef]
  4. A. S. P. Chang, H. Cao, and S. Y. Chou, "Optically tuned subwavelength resonant grating filter with bacteriorhodopsin overlayer," in Lasers and Electro-Optics Society Annual Meeting (LEOS03, 2003), p. 411.
  5. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, "Broad-band mirror (1.12-1.62 μm) using a subwavelength grating," IEEE Photonics Technol. Lett.,  16, 1676 (2004). [CrossRef]
  6. C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photonics Technol. Lett.,  16, 518 (2004). [CrossRef]
  7. C. J. Chang-Hasnain, "Tunable VCSEL," IEEE J. Sel. Top. Quantum Electron.,  6, 978 (2000). [CrossRef]
  8. M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, and J. Rosskopf, "Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5MHz repetition rate," Meas. Sci. Technol.,  14, 101, (2003). [CrossRef]
  9. M. Maute, Bohm, G. , Amann, M.-C. , Kgel, B. , Halbritter, H. , MeissnerP. , "Long-wavelength tunable verticalcavity surface-emitting lasers and the influence of coupled cavities," Opt. Express,  13, 8008-8014 (2005), http://www.opticsexpress.org/abstract.cfm?id=85752. [CrossRef] [PubMed]
  10. W. Peidong, P. Tayebati, D. Vakhshoori, L. Chih-Cheng, M. Azimi, and R. N. Sacks, "Half-symmetric cavity microelectromechanically tunable vertical cavity surface emitting lasers with single spatial mode operating near 950 nm," Appl. Phys. Lett. 75, 897 (1999). [CrossRef]
  11. G. Piazza, K. Castelino, A. P. Pisano, and C. J. Chang-Hasnain, "Design of a monolithic piezoelectrically actuated microelectromechanical tunable vertical-cavity surface-emitting laser," Opt. Lett.,  30, 896 (2005). [CrossRef] [PubMed]
  12. Y. Wupen, G. S. Li, and C. J. Chang-Hasnain, "Multiple-wavelength vertical-cavity surface-emitting laser arrays with a record wavelength span," IEEE Photonics Technol. Lett.,  8, 4 (1996). [CrossRef]
  13. M. Arai, T. Kondo, A. Onomura, A. Matsutani, T. Miyamoto, and F. Koyama, "Multiple-wavelength GaInAs- GaAs vertical cavity surface emitting laser array with extended wavelength span," IEEE J. Sel. Top. Quantum Electron.,  9, 1367 (2003). [CrossRef]
  14. Y. Kai, Z. Yuxin, X. D. Huang, C. P. Hains, and C. Julian, "Monolithic oxide-confined multiple-wavelength vertical-cavity surface-emitting laser arrays with a 57-nm wavelength grading range using an oxidized upper Bragg mirror," IEEE Photonics Technol. Lett.,  12, 377 (2000). [CrossRef]
  15. J. Geske, Y. L. Okuno, J. E. Bowers, and V. Jayaraman, "Vertical and lateral heterogeneous integration," Appl. Phys. Lett. 79, 1760 (2001). [CrossRef]
  16. A. Karim, P. Abraham, D. Lofgreen, Y. J. Chiu, J. Piprek, and J. Bowers, "Wafer-bonded 1.55 μm vertical cavity laser arrays for wavelength division multiplexing," Electron. Lett. 37, 431 (2001). [CrossRef]
  17. D.W. Peters, S. A. Kemme, and G. R. Hadley, "Effect of finite grating, waveguide width, and end-facet geometry on resonant subwavelength grating reflectivity," J. Opt. Soc. Am. A,  21, 981 (2004). [CrossRef]
  18. R. Petit, and L. C. Botten, "Electromagnetic theory of gratings" (Springer-Verlag, Berlin; New York, 1980).
  19. M. Neviere, and E. Popov, "Light Propagation in Periodic Media, Differential Theory and Design" (Marcel Dekker Inc., New York, 2004).
  20. M. G. Moharam, T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780 (1986). [CrossRef]
  21. Lifeng Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758 (1997). [CrossRef]
  22. A. Taflove and S. C. Hagness, "Computational electrodynamics : the finite-difference time-domain method. Boston" (Artech House, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (234 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited