OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2589–2595

An automatic step adjustment method for average power analysis technique used in fiber amplifiers

Xue-Ming Liu  »View Author Affiliations


Optics Express, Vol. 14, Issue 7, pp. 2589-2595 (2006)
http://dx.doi.org/10.1364/OE.14.002589


View Full Text Article

Enhanced HTML    Acrobat PDF (183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers.

© 2006 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2410) Fiber optics and optical communications : Fibers, erbium

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 19, 2005
Revised Manuscript: March 13, 2006
Manuscript Accepted: March 23, 2006
Published: April 3, 2006

Citation
Xue-Ming Liu, "An automatic step adjustment method for average power analysis technique used in fiber amplifiers," Opt. Express 14, 2589-2595 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Berkdemir, and S. Ozsoy "The temperature dependent performance analysis of EDFAs pumped at 1480 nm: A more accurate propagation equation," Opt. Express 13, 5179-5185 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5179 [CrossRef] [PubMed]
  2. M. A. Quintela, J. Lopez-Higuera, and C. Jauregui, "Polarization characteristics of a reflective erbium doped fiber amplifier with temperature changes at the Faraday rotator mirror," Opt. Express 13, 1368-1376 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1368 [CrossRef] [PubMed]
  3. M. Bolshtyansky, I. Mandelbaum, and F. Pan, "Signal excited-state absorption in the L-band EDFA: Simulation and measurements," J. Lightwave Technol. 23, 2796-2799 (2005). [CrossRef]
  4. J. B. Rosolem, A. Juriollo, R. Arradi, A. D. Coral, J. C. R. Oliveira and M. A. Romero, "All silica S-band double-pass erbium-doped fiber amplifier," IEEE Photonics Technol. Lett. 17, 1399-1401 (2005). [CrossRef]
  5. P. S. Chan and H. K. Tsang, "Minimizing gain transient dynamics by optimizing the erbium concentration and cavity length of a gain clamped EDFA," Opt. Express 13, 7520-7526 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-19-7520 [CrossRef] [PubMed]
  6. E. Desurvire, Erbium-doped fiber amplifiers: Principles and Applications, (John Wiley, New York, 1994).
  7. T. G. Hodgkinson, "Average power analysis technique for erbium-doped fiber amplifiers," IEEE Photonics Technol. Lett. 3, 1082-1084 (1991). [CrossRef]
  8. T. G. Hodgkinson, "Improved average power analysis technique for erbium-doped fiber amplifiers," IEEE Photonics Technol. Lett. 4, 1273-1275 (1992). [CrossRef]
  9. M. J. Adams, J. V. Collins, and I. D. Henning, "Analysis of semiconductor laser optical amplifiers", IEE. Proc.J Optoelectron. 132, 58-63 (1985). [CrossRef]
  10. C. Glingener, J. -P. Elbers, and E. Voges, "Simulation tool for WDM networks," in WDM Technology and Applications (Digest No. 1997/036), IEE Colloquium on 6 Feb. 1997 Page(s): 17/1-17/4
  11. M. Karasek, M. Menif, A. Bellemare, "Design of wideband hybrid amplifiers for local area networks," IEE Proc. J. Optoelectron. 148, 150-155 (2001). [CrossRef]
  12. L. Zhu, Y. Ma, G. Wang,  et al., "General computer model for both erbium-doped fiber amplifier and fiber Raman amplifier," Opt. Eng. 41, 1805-1808 (2002). [CrossRef]
  13. M. M. Tiesler, J. Witkowski, and K. Abramski, "Quality criterion for numerical methods in EDFA modeling," Optica Applicata 32, 187-196 (2002).
  14. S. K. Kim, S. Chang, J. Han,  et al., "Design of hybrid optical amplifiers for high capacity optical transmission," ETRI J. 24, 81-96 (2002). [CrossRef]
  15. A. Bononi, and L. Rusch, "Doped-fiber amplifier dynamics: a system perspective," J. Lightwave Technol. 16, 945-956 (1998). [CrossRef]
  16. J. Bryce, Y. Zhao, and R. Minasian, "Modeling and optimization of add-drop dynamics in gain-clamped fiber amplifiers," Appl. Opt. 39, 4270-4277 (2000). [CrossRef]
  17. I. Roudas, D. Richards, N. Antoniades,  et al., "An efficient simulation model of the erbium-doped fiber for the study of multiwavelength optical networks," Opt. Fiber Technol. 5, 363-389 (1999). [CrossRef]
  18. C. R. Giles and E. Desurvire, ‘‘Modeling erbium-doped fiber amplifiers,’’J. Lightwave Technol. 9, 271-283 (1991). [CrossRef]
  19. B. Pedersen, K. Dybdal, C. D. Hansen,  et al., "Detailed theoretical and experimental investigation of high-gain erbium-doped fiber amplifier," IEEE Photonics Technol. Lett. 2, 863-865 (1990). [CrossRef]
  20. B. Pedersen, S. A. Zemon, and W. J. Miniscalco, "Analysis of erbium-doped fiber amplifiers pumped at 800nm," Fiber and Integr. Opt.,  10, 127-136 (1991). [CrossRef]
  21. R. J. Mears, and S. R. Baker, "Erbium fiber amplifiers and lasers," Opt. Quantum Electron. 24, 517-538 (1992). [CrossRef]
  22. A. A. Rieznik, and H. Fragnito, "Analytical solution for the dynamic behavior of erbium-doped fiber amplifiers with constant population inversion along the fiber," J. Opt. Soc. Am. B 21, 1732-1739 (2004). [CrossRef]
  23. Z. G. Lu, J. Liu, F. Sun,  et al., "A hybrid fiber amplifier with 36.9-dBm output power and 70-dB gain," Opt. Commun. 256, 352-357 (2005). [CrossRef]
  24. C. Cheng, and M. Xiao, "Optimization of an erbium-doped fiber amplifier with radial effects," Opt. Commun. 254, 215-222 (2005). [CrossRef]
  25. U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential- Algebraic Equations (SIAM, Philadelphia, 1998). [CrossRef]
  26. B. K. Min, W. Lee, and N. Park, "Efficient formulation of Raman amplifier propagation equations with average power analysis," IEEE Photon. Technol. Lett. 12, 1486-1488 (2000). [CrossRef]
  27. Z. Tong, H. Wei, and S. Jian, "A novel algorithm to simulate DWDM transmission systems amplified by backward multipumped fiber Raman amplifiers," Microwave Opt. Technol. Lett. 35, 333-337 (2002). [CrossRef]
  28. M. Menif, M. Karasek, and L. Rusch, "Cross-gain modulation in Raman fiber amplifier: Experimentation and Modeling," IEEE Photonics Technol. Lett. 14, 1261-1263 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited