OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2596–2610

Analysis of perturbed Bragg fibers with an extended transfer matrix method

M. Yan and P. Shum  »View Author Affiliations

Optics Express, Vol. 14, Issue 7, pp. 2596-2610 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (715 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce an extended transfer matrix method (TMM) for solving guided modes in leaky optical fibers with layered cladding. The method can deal with fibers with circular but nonconcentric material interfaces. Validity of the method is verified by two full-vector numerical methods. The TMM is then used to investigate the guidance property of perturbed Bragg fibers. Our analysis reveals that the core modes will interact with each other when a perturbed Bragg fiber has only C1 symmetry. Special attention is paid to the first transverse-electric (TE01) mode, which is found to experience severe degradation around spectral regions where its dispersion curve supposedly crosses a transverse-magnetic (TM) or hybrid mode.

© 2006 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.1480) Optical devices : Bragg reflectors
(230.7370) Optical devices : Waveguides

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 21, 2005
Revised Manuscript: March 1, 2006
Manuscript Accepted: March 16, 2006
Published: April 3, 2006

M. Yan and P. Shum, "Analysis of perturbed Bragg fibers with an extended transfer matrix method," Opt. Express 14, 2596-2610 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  2. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. M. Solja ci`c, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-779 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=oe-9-13-748. [CrossRef] [PubMed]
  3. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, "Hollow multilayer photonic bandgap fibers for NIR applications," Opt. Express 12, 1510-1517 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1510. [CrossRef] [PubMed]
  4. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  5. T. Okoshi, Optical Fibers, 1st ed. (Academic Press, 1982).
  6. P. McIsaac, "Symmetry-induced modal characteristics of uniform waveguides — I: Summary of results," IEEE Trans. Microwave Theory Tech. 23, 421-429 (1975). [CrossRef]
  7. S. Guo, F. Wu, S. Albin, H. Tai, and R. S. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express 12, 3341-3352 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3341. [CrossRef] [PubMed]
  8. T. Katagiri, Y. Matsuura, and M. Miyagi, "Photonic bandgap fiber with a silica core and multilayer dielectric cladding," Opt. Lett. 29, 557-559 (2004). [CrossRef] [PubMed]
  9. G. Vienne, Y. Xu, C. Jakobsen, H.-J. Deyerl, J. B. Jensen, T. Sorensen, T. P. Hansen, Y. Huang, M. Terrel, R. K. Lee, N. A. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Express 12, 3500-3508 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3500. [CrossRef] [PubMed]
  10. M. Yan, J. Canning, G. Vienne, and P. Shum, "Investigation of practical air-silica Bragg fiber," in Australian Conference on Optical Fibre Technology (ACOFT) (Sydney, Australia, 2005).
  11. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, and J. D. Joannopoulos, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65, 066,611 (2002). [CrossRef]
  12. M. Skorobogatiy, S. G. Johnson, S. A. Jacobs, and Y. Fink, "Dielectric profile variations in high-index-contrastwaveguides, coupled mode theory, and perturbation expansions," Phys. Rev. E 67, 046,613 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited