OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2671–2678

A 2-to-4 decoder switch in SiGe/Si multimode interference

Zhiwen Chen, Zhangjian Li, and Baojun Li  »View Author Affiliations

Optics Express, Vol. 14, Issue 7, pp. 2671-2678 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (260 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on multimode interference principle and free-carrier plasma dispersion effect, a SiGe/Si 2-to-4 decoder switch is proposed and simulated. The decoder switch consists of two input single-mode ridge waveguides, a multimode interference section, and four output single-mode ridge waveguides. In the multimode interference section, two index-modulation regions are introduced. Design principle of the decoder switch is described and the device characteristics are demonstrated theoretically by beam propagation method. Simulated results show that the insertion loss of the decoder switch is less than 0.36 dB and the crosstalk is less than -19.7 dB. The device can divert input optical signals to any one of the four output waveguides when a forward bias voltage is applied to the two index-modulation regions.

© 2006 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: February 14, 2006
Revised Manuscript: March 26, 2006
Manuscript Accepted: March 27, 2006
Published: April 3, 2006

Zhiwen Chen, Zhangjian Li, and Baojun Li, "A 2-to-4 decoder switch in SiGe/Si multimode inteference," Opt. Express 14, 2671-2678 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Li and S. J. Chua, "High carrier injection optical switch based on two-mode interference in SiGe alloy," Appl. Phys. Lett. 80, 180-182 (2002). [CrossRef]
  2. B. J. Li, J. Li, Y. Z. Zhao, X. B. Lin, S. J. Chua, L. Y. Miao, E. A. Fitzgerald, M. L. Lee, and B. S. Chaudhari, "Ultracompact, multifunctional, and highly integrated 3×2 photonic switches," Appl. Phys. Lett. 84, 2241-2243 (2004). [CrossRef]
  3. G. Coppola, A. Irace, G. Breglio, and A. Cutolo, "All-silicon mode-mixing router based on the plasma-dispersion effect," J. Opt. A: Pure Appl. Opt. 3, 346-354 (2001). [CrossRef]
  4. Q. Lai, W. Hunziker, and H. Melchior, "Low-power compact 2×2 thermooptic silica-on-silicon waveguide switch with fast response," IEEE Photonics Technol. Lett. 10, 681-683 (1998). [CrossRef]
  5. R. Kasahara, M. Yanagisawa, A. Sugita, T. Goh, M. Yasu, A. Himeno, and S. Matsui, "Low-power consumption silica-based 2×2 thermooptic switch using trenched silicon substrate," IEEE Photonics Technol. Lett. 11, 1132-1134 (1999). [CrossRef]
  6. C. S. Tsai and P. Le, "4×4 nonblocking integrated acousto-optic space switch," Appl. Phys. Lett. 60, 431-433 (1992). [CrossRef]
  7. G. Aubin, J. Sapriel, V. Y. Molchanov, R. Gabet, P. Grosso, S. Gosselin, and Y. Jaouen, "Multichannel acousto-optic cells for fast optical crossconnect," Electron. Lett. 40, 448-449 (2004). [CrossRef]
  8. Z. H. Weng, G. G. Yang, Y. Q. Huang, Z. M. Chen, Y. Zhu, J. M. Wu, S. F. Lin, and W. P. Mo, "Analysis of optical route in a micro high-speed magneto-optic switch," Proc. SPIE 5625, 836-847 (2005). [CrossRef]
  9. J. H. Park, K. Nishmura, M. Inoue, D. H. Lee, and J. K. Cho, "Effects of groove depth and patterned permalloy film on magnetization switching of LPE-garnet pixels for use in magneto-optic spatial light modulators," J. Appl. Phys. 91, 7014-7016 (2002). [CrossRef]
  10. M. Yagi, S. Nagai, H. Inayoshi, and K. Utaka, "Versatile multimode interference photonic switches with partial index-modulation regions," Electron. Lett. 36, 533-534 (2000). [CrossRef]
  11. L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995). [CrossRef]
  12. J. M. Heaton and R. M. Jenkins, "General matrix theory of self-imaging in multimode interference (MMI) couplers," IEEE Photonics Technol. Lett. 11, 212-214 (1999). [CrossRef]
  13. B. J. Li, S. J. Chua, E. A. Fitzgerald, B. S. Chaudhari, S. J. Jiang, and Z. G. Cai, "Intelligent integration of optical power splitter with optically switchable cross-connect based on multimode interference principle in SiGe/Si," Appl. Phys. Lett. 85, 1119-1121 (2004). [CrossRef]
  14. Z. J. Li, Z. W. Chen, and B. J. Li, "Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference," Opt. Express,  13, 1033-1038 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-1033 [CrossRef] [PubMed]
  15. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129, (1987). [CrossRef]
  16. S. M. Sze, Semiconductor devices: physics and technology. New Jersey: Wiley, 1985.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited