OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2679–2689

Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves

Yao Zhang, Zhangjian Li, and Baojun Li  »View Author Affiliations

Optics Express, Vol. 14, Issue 7, pp. 2679-2689 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (323 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Applicability of multimode interference effect and self-imaging principle for terahertz waves in two-dimensional silicon photonic crystal waveguides are investigated by modeling and computation. The results show that the multimode interference effect and the self-imaging principle are applicable for terahertz waves. As an example, a splitter and a filter for terahertz waves have been proposed, calculated and analyzed by finite-difference time-domain method based on the multimode interference effect and the self-imaging principle.

© 2006 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: February 10, 2006
Revised Manuscript: March 22, 2006
Manuscript Accepted: March 23, 2006
Published: April 3, 2006

Yao Zhang, Zhangjian Li, and Baojun Li, "Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves," Opt. Express 14, 2679-2689 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002). [CrossRef] [PubMed]
  2. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil and G. P. Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002). [CrossRef] [PubMed]
  3. A. Borak, "Toward bridging the terahertz gap with silicon-based lasers," Science 308, 638-639 (2005). [CrossRef] [PubMed]
  4. O. Astafiev, S. Komiyama and T. Kutsuwa, "Double quantum dots as a high sensitive submillimeter-wave detector," Appl. Phys. Lett. 79, 1199-1201 (2001). [CrossRef]
  5. D. Clery, "Terahertz on a chip," Science 297, 763 (2002). [CrossRef] [PubMed]
  6. N. C. J. van der Valk and P. C. M. Planken, "Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip," Appl. Phys. Lett. 81, 1558-1560 (2002). [CrossRef]
  7. T. A. Liu, M. Tani, M. Nakajima, M. Hangyo and C. L. Pan "Ultrabroadband terahertz field detection by photoconductive antennas based on multi-energy arsenic-ion-implanted GaAs and semi-insulating GaAs," Appl. Phys. Lett. 83, 1322-1324 (2003). [CrossRef]
  8. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379, (2004). [CrossRef] [PubMed]
  9. D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66, (2004). [CrossRef]
  10. H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Yuan, N. Kawai, K. Sokada and K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001). [CrossRef]
  11. H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002). [CrossRef]
  12. C. Jin, B. Cheng, Z. Li, D. Zhang, L. M. Li and Z. Q. Zhang, "Two dimensional metallic photonic crystal in the THz range" Opt. Commun. 166, 9-13 (1999). [CrossRef]
  13. N. Jukam and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003). [CrossRef]
  14. C. Lin, C. Chen, G. J. Schneider, P. Yao, S. Shi, A. Sharkawy and D. W. Prather, "Wavelength scale terahertz two-dimensional photonic crystal waveguides," Opt. Express 12, 5723-5728 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-57231 [CrossRef] [PubMed]
  15. K. Takagi, K. Seno and A. Kawasaki, "Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles," Appl. Phys. Lett. 85, 3681-3683 (2004). [CrossRef]
  16. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe and D. R. S. Cumming, "Transmittance of a tunable filter at terahertz frequencies," Appl. Phys. Lett. 85, 5173-5175 (2004). [CrossRef]
  17. H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard and D. Rauly, "Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect," J. Appl. Phys. 96, 4072-4075 (2004). [CrossRef]
  18. H. Kurt and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005). [CrossRef]
  19. A. Bingham, Y. Zhao and D. Grischkowsky, "THz parallel plate photonic waveguides," Appl. Phys. Lett. 87, 051101 (2005). [CrossRef]
  20. H. J. Kim, I. Park, B. H. O, S. G. Park, E. H. Lee and S. G. Lee, "Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing," Opt. Express 12, 5625-5633 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-23-5625 [CrossRef] [PubMed]
  21. L. B. Soldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995). [CrossRef]
  22. M. Qiu, "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett. 81, 1163-1165 (2002). [CrossRef]
  23. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173 [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited