OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2798–2804

In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber

Hideaki Kano and Hiro-o Hamaguchi  »View Author Affiliations

Optics Express, Vol. 14, Issue 7, pp. 2798-2804 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (270 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A supercontinuum light source generated with a femtosecond Ti:Sapphire oscillator has been used to obtain both vibrational and two-photon excitation fluorescence (TPEF) images of a living cell simultaneously at different wavelengths. Owing to an ultrabroadband spectral profile of the supercontinuum, multiple vibrational resonances have been detected through coherent anti-Stokes Raman scattering (CARS) process. In addition to the multiplex CARS process, multiple electronic states can be excited due to the broadband electronic two-photon excitation using the supercontinuum, giving rise to a two-photon excitation fluorescence (TPEF) signal. Using a living yeast cell whose nucleus is labeled by green fluorescent protein (GFP), we have succeeded in visualizing organelles such as mitochondria, septum, and nucleus through the CARS and the TPEF processes. The supercontinuum enables us to perform unique multi-nonlinear optical imaging through two different nonlinear optical processes.

© 2006 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering

ToC Category:
Nonlinear Optics

Original Manuscript: January 3, 2006
Manuscript Accepted: March 15, 2006
Published: April 3, 2006

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Hideaki Kano and Hiro-o Hamaguchi, "In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber," Opt. Express 14, 2798-2804 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. J. Puppels, F. F. M. De Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, "Studying single living cells and chromosomes by confocal Raman microspectroscopy," Nature (London, United Kingdom) 347,301-303 (1990). [CrossRef] [PubMed]
  2. G. J. Puppels, J. H. Olminkhof, G. M. Segers-Nolten, C. Otto, F. F. de Mul, and J. Greve, "Laser irradiation and Raman spectroscopy of single living cells and chromosomes: sample degradation occurs with 514.5 nm but not with 660 nm laser light," Exp. Cell Res. 195,361-367 (1991). [CrossRef] [PubMed]
  3. Y. Takai, T. Masuko, and H. Takeuchi, "Lipid structure of cytotoxic granules in living human killer T lymphocytes studied by Raman microspectroscopy," Biochim. Biophys. Acta 1335,199-208 (1997). [CrossRef] [PubMed]
  4. C. Otto, N. M. Sijtsema, and J. Greve, "Confocal Raman microspectroscopy of the activation of single neutrophilic granulocytes," Eur. Biophys. J. 27,582-589 (1998). [CrossRef] [PubMed]
  5. Y.-S. Huang, T. Karashima, M. Yamamoto, and H. Hamaguchi, "Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy," J. Raman Spectrosc. 34,1-3 (2003). [CrossRef]
  6. Y.-S. Huang, T. Karashima, M. Yamamoto, T. Ogura, and H. Hamaguchi, "Raman spectroscopic signature of life in a living yeast cell," J. Raman Spectrosc. 35,525-526 (2004). [CrossRef]
  7. Y.-S. Huang, T. Karashima, M. Yamamoto, and H. Hamaguchi, "Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman Spectroscopy," Biochemistry 44,10009-10019 (2005). [CrossRef] [PubMed]
  8. Y. Naito, A. Toh-e,and H.-o. Hamaguchi, "In vivo time-resolved Raman imaging of a spontaneous death process of a single budding yeast cell," J. Raman Spectrosc. 36,837-839 (2005). [CrossRef]
  9. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti-stokes raman scattering," Phys. Rev. Lett. 82,4142-4145 (1999). [CrossRef]
  10. J.-X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, "Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology," Biophys. J. 83,502-509 (2002). [CrossRef] [PubMed]
  11. M. Hashimoto, T. Araki, and S. Kawata, "Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration," Opt. Lett. 25,1768-1770 (2000). [CrossRef]
  12. G. W. H. Wurpel, J. M. Schins, and M. Mueller, "Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 27,1093-1095 (2002). [CrossRef]
  13. H. N. Paulsen, K. M. Hilligsoe, J. Thogersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28,1123-1125 (2003). [CrossRef] [PubMed]
  14. R. D. Schaller, J. Ziegelbauer, L. F. Lee, L. H. Haber, and R. J. Saykally, "Chemically selective imaging of subcellular structure in human hepatocytes with coherent anti-stokes Raman scattering (CARS) near-field scanning optical microscopy (NSOM)," J. Phys. Chem. B 106,8489-8492 (2002). [CrossRef]
  15. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, "Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging," Phys. Rev. Lett. 92,220801 (2004). [CrossRef] [PubMed]
  16. C. Otto, A. Voroshilov, S. G. Kruglik, and J. Greve, "Vibrational bands of luminescent zinc(II)-octaethyl-porphyrin using a polarization-sensitive "microscopic" multiplex CARS technique," J. Raman Spectrosc. 32,495-501 (2001). [CrossRef]
  17. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, "Multiplex coherent anti-stokes raman scattering microspectroscopy and study of lipid vesicles," J. Phys. Chem. B 106,8493-8498 (2002). [CrossRef]
  18. D. Oron, N. Dudovich, and Y. Silberberg, "Single-pulse phase-contrast nonlinear Raman Spectroscopy," Phys. Rev. Lett. 89,273001 (2002). [CrossRef]
  19. D. Oron, N. Dudovich, D. Yelin, and Y. Silberberg, "Narrow-band coherent anti-stokes Raman signals from broad-band pulses," Phys. Rev. Lett. 88,063004 (2002). [CrossRef] [PubMed]
  20. H. Kano, and H. Hamaguchi, "Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy," J. Raman Spectrosc., in press.
  21. S.-H. Lim, A. G. Caster, and S. R. Leone, "Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy," Phys. Rev. A 30,2805-2807 (2005).
  22. I. G. Petrov, and V. V. Yakovlev, "Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy," Opt. Express 13,1299 (2005). [CrossRef] [PubMed]
  23. http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1299 [CrossRef]
  24. S. O. Konorov, D. A. Akimov, E. E. Serebryannikov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, "Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers," Phys. Rev. E 70,057601 (2004). [CrossRef]
  25. H. Kano, and H. Hamaguchi, "Ultrabroadband (>2500 cm-1) Multiplex coherent anti-stokes raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber," Appl. Phys. Lett. 86,121113-121115 (2005). [CrossRef] [PubMed]
  26. H. Kano, and H. Hamaguchi, "Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express 13,1322-1327 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1322 [CrossRef] [PubMed]
  27. T. W. Kee, and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 29,2701-2703 (2004). [CrossRef] [PubMed]
  28. C. McConnell, and E. Riis, "Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2," Phys. Med. Biol. 49,4757-4763 (2004). [CrossRef]
  29. K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, "Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source," Jpn. J. Appl. Phys. Part 2 44,L167-L169 (2005). [CrossRef] [PubMed]
  30. J. A. Palero, V. O. Boer, J. C. Vijverberg, H. C. Gerritsen, and H. J. C. M. Sterenborg, "Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source," Opt. Express 13,5363-5368 (2005).
  31. http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-14-5363. [CrossRef] [PubMed]
  32. H. Kano, and H. Hamaguchi, "Vibrational imaging of a J-aggregate microcrystal using ultrabroadband multiplex coherent anti-Stokes Raman scattering microspectroscopy," submitted toVibrational Spectroscopy.
  33. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, "Coherent anti-Stokes Raman scattering imaging of live spinal tissues," Biophys. J. 89,581-591 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited